
Guideline on Developing Good
Ontologies in the Biomedical Domain

with Description Logics

URL: http://www.purl.org/goodod/guideline

Version 1.0
December 2012

Send feedback to:
martin.boeker@uniklinik-freiburg.de

ludger.jansen@uni-rostock.de

Schulz S1,3, Seddig-Raufie D1, Grewe N2, Röhl J2,
Schober D1, Boeker M1, Jansen L2

1: Institute of Medical Biometry and Medical Informatics,
University Medical Center Freiburg

2: Institute of Philosophy, University of Rostock
3: Department of Medical Informatics, University of Graz

11th December 2012

Contents

1. Introduction 5
1.1. Main Objectives and Intended Usage of this Guideline 5
1.2. Structure of the Document . 6
1.3. Typographical Conventions . 6
1.4. Document Status and Feedback . 7

2. Fundamentals 8
2.1. What Does “Ontology” Mean? . 8
2.2. What Is an Ontology in Information Science? 9
2.3. What Is an Ontology? . 10
2.4. Why Do We Build and Use Ontologies? . 10
2.5. What an Ontology Is not . 11

2.5.1. Ontology vs. Knowledge Base . 11
2.5.2. Ontology vs. Inventory . 13

2.6. The Elements of Ontologies . 13
2.6.1. Classes of Individuals . 13
2.6.2. Relations . 14

2.6.2.1. General Remarks . 14
2.6.2.2. Taxonomies . 15

2.6.3. Metadata . 16
2.7. A Formal Characterization of an Ontology 17

3. Description Logics (DL) 18
3.1. What Are Description Logics? . 18
3.2. Description Logics Basics . 18
3.3. Description Logics: Syntax and Semantics 19

3.3.1. Working with Classes . 19
3.3.2. Working with Data and Object Properties 23

3.4. DL Ontology Pitfalls . 25

4. Upper-Level Ontology 27
4.1. What Are the Most General Kinds of Being? 28

4.1.1. Starting with Aristotle . 28
4.1.2. Dependent and Independent Entities 29
4.1.3. Continuants and Occurrents . 29
4.1.4. Classes and Their Members . 30

2

4.2. Two Important Top-Level Ontologies . 32
4.2.1. BFO: Basic Formal Ontology . 32
4.2.2. DOLCE: Descriptive Ontology for Linguistic and Cognitive Engineering 34

4.3. BioTop: An Upper-Domain Ontology for the Life Sciences 34
4.3.1. The Structure of BioTop . 36
4.3.2. Material Object . 38
4.3.3. Collective Material Entities and Compounds of Them 40
4.3.4. Immaterial Object . 41
4.3.5. Structured Biological Entities . 42
4.3.6. Process and Participation . 42
4.3.7. Qualities and Their Values . 44

4.3.7.1. Taxonomic Differentiation of Organisms 45
4.3.7.2. Differentiation between Canonical and Pathological 45

4.3.8. Information Object . 46
4.3.9. Roles and Dispositions . 46

5. Good Practice Ontology Design Principles 49
5.1. Class Selection Principles . 49

5.1.1. Linguistic Pitfalls for Class Selection 49
5.1.2. Further Class Selection Rules . 50

5.2. Specifying Class Metadata . 51
5.2.1. What Is Metadata? . 51
5.2.2. Why Does One Need Metadata? . 52
5.2.3. Don’t Get Stuck in the ’Meta-Ether’ 54

5.3. Naming Conventions . 54
5.4. Designing Taxonomies . 55

5.4.1. General Design Recommendations 55
5.4.2. Subsumption Misuse Problems . 57
5.4.3. OntoClean Taxonomy Design Principles 58

5.5. Relations for Rich Class Definitions . 58
5.5.1. Example: Parthood Relations . 58
5.5.2. Difficulties with Inverse Relations 59

6. Ontology Design Patterns (ODPs) 60
6.1. What Are Ontology Design Patterns (ODPs)? 60
6.2. Extension ODPs . 60

6.2.1. Exceptions . 60
6.2.2. N-ary Relations . 62

6.3. Good Practice ODPs . 63
6.3.1. Normalisation . 63
6.3.2. Closure . 66
6.3.3. Value Partitions . 67

6.4. Content ODPs . 68
6.4.1. Spatial disjointness . 68

3

A. Appendix: Using Protégé and its Reasoners 70
A.1. The Ontology Editor Protégé . 70
A.2. Tips and Tricks . 70

A.2.1. Expand the Protégé Store (Memory) 70
A.2.2. Protégé Update and Download New Plugins 71
A.2.3. OWLViz . 71
A.2.4. Proxy Setting in Protégé 4 . 72
A.2.5. Import Biotop in Protégé 4.x . 74

A.3. Reasoner . 77
A.3.1. What Is a Reasoner? . 77
A.3.2. Why Do We Use a Reasoner? . 78
A.3.3. HermiT Reasoner . 78

Bibliography 82

4

1. Introduction

1.1. Main Objectives and Intended Usage of this
Guideline

Ontology engineering is mainly done by domain experts who are specialists in their domain
but have, if at all, limited knowledge in logics, computer science, or analytic philosophy. The
vast literature on formal ontologies in general or on biomedical ontologies in particular is not
suited (nor intended) to serve as an educational resource that would help domain experts to
become good ontologists. Existing educational resources focus rather on ontology tools and
languages than on good practice. The ongoing controversies encompassing practical, philo-
sophical and computational aspects are necessary and fruitful for researchers and theoreticians
but are confusing and discouraging for engineers. The purpose of the GoodOD guideline is
to pave the road for domain experts who want (or need) to become ontology engineers. It
pursues the openly pragmatic approach that ontology engineers only need to know ontology
theory to the extent which supports the (measurable) outcome of their work. In its main body
it builds upon given philosophical and methodological principles as well as preexisting tools
and resources. In particular, it builds on:

• (pragmatic) scientific realism,

• first order logics and its subset OWL-DL (description logics),

• set theory,

• an upper-level ontology with high-level categories and a canonic set of relations,

• constraints which limit the freedom of choice when building coordinate expressions,

• the ontology editor Protégé 4,

• a complete DL reasoner, such as HermIT,

• ontology design patterns, and

• naming conventions.

Given these precepts the guideline contains all knowledge to be acquired by a user to be able
to solve ontology engineering problems in a foreseeable and non-arbitrary way. The didactic
concept is to convey the skills not only by theory but also by practical examples. The guideline
itself is not a tutorial, but it is designed in a way to facilitate the re-use of its content for the
building of course materials (Boeker et al., 2012). Although we do recommended to read the

5

chapters in sequential order, readers with some acquaintance with the field can also read single
chapters as stand-alones. While the recommendations of the guideline are independent from
the software used, terminology and examples are drawn from the Protégé editor. Readers that
are not acquainted with this programme should consult the appendix before reading section
4.3 or any subsequent chapter.

The spirit of the ontology engineering guideline can be outlined with the following compar-
ison: To build good quality furniture from raw materials one needs to acquire the knowledge
and skills of carpentry which would take several years of apprenticeship. But everybody is
able to build pieces of furniture (with a predictable result) using pre-fabricated components.
However, this requires intelligently constructed components together with intelligently de-
signed manuals. The degrees of freedom are drastically limited but the result is achieved with
considerably less effort. We pursue the same goal with this GoodOD guideline.

1.2. Structure of the Document
The following document is divided into five parts and a technical appendix. Depending on
the reader’s background some sections may be skipped, but they are best read in the order
presented as there is progress from the more general information to the more specific and
pragmatic. It starts in chapter 2 with a brief outline what is meant by “ontology” by philo-
sophers and computer scientists, respectively, and how the distinction between an ontology
and other structures of knowledge representation can be drawn. The main taxonomic struc-
ture and the basic elements, classes and relations of ontologies are introduced and explained.
Chapter 3 introduces description logics (DL), the formal language of ontologies used in the
guidelines and explains its usage in building ontologies. In chapter 4 top-level ontologies are
distinguished from domain ontologies and intermediate-level “upper domain ontologies”. The
most important top-level category distinctions are outlined. The second part of this chapter
describes BioTop, an upper domain ontology for the domains of biology and medicine, in con-
siderable detail. The two remaining chapters focus on actual rules and guidance for building
DL ontologies within the framework described. This starts with rather general principles for
ontology design concerning criteria for what sorts of classes and relation should be admitted to
an ontology and is followed by the description of concrete and application-centered ontology
design patterns that can help with frequent problems in ontological modelling.

1.3. Typographical Conventions
In accordance with Protégé and BioTop, in this guideline we use:

• italics, upper case initial and camelback notation capitalization for class terms (like
Disposition, IndependentContinuant, UpperFemurOfTheLeftLeg, OxygeneMolecule)

• bold font, lower case initial and camelback notation for formal relations or object prop-
erties (like hasProperPhysicalPart or participatesIn)

6

• a fixed-width font and lower case initial for logical connectors (like and, or, not,
some, only).

1.4. Document Status and Feedback
This document was written as a collaborative effort within the GoodOD project, a joint re-
search project of philosophers from the University of Rostock and medical information sci-
entists from the University of Freiburg, funded by the German Research Foundation (DFG).
It reflects the experience of developing ontologies as well as working with ontology engineers
and teaching students in the theoretical and practical basics of ontology engineering. Many
chapters in this guideline benefit from research that we documented in previous publications.
E.g., chapter 2 draws on Jansen (2010), section 4.1 on Jansen (2008a) and section 4.3.2.1
on Jansen & Schulz (2011). More information about the GoodOD project can be found at
http://www.purl.org/goodod.

In many aspects, this guideline is work in progress and we want to further develop and im-
prove on these guidelines. For this purpose, we rely on feedback from experiences in the prac-
tical use of our guidelines, and we appreciate suggestions for improvements, clarification and
amendments. Please address you comments to Martin Boeker (martin.boeker@uniklinik-
freiburg.de) and Ludger Jansen (ludger.jansen@uni-rostock.de).

7

http://www.purl.org/goodod
martin.boeker@uniklinik-freiburg.de
martin.boeker@uniklinik-freiburg.de
ludger.jansen@uni-rostock.de

2. Fundamentals

This chapter provides a short overview on what ontologies are, why they are built and what
their elements are. The word “ontology” was first used in philosophy as a name for the study
of the most general kinds of being or general metaphysics. By now, the term has been adopted
by computer and information science and acquired a different if related meaning there.

2.1. What Does “Ontology” Mean?
The word “ontology” was coined in the 17th century to name the philosophical discipline of
general metaphysics. It derives from the participle of the Greek equivalent of the verb “to
be”, on (“being”), the genitive of which is ontos (“of being”), and logos, which in this context
means as much as “study” or “science”. While the name is modern, the discipline named has
roots back in ancient Greek philosophy. Aristotle, who can be considered to be its founding
father, called it “first philosophy”, and his treatises came to be known under the title Ta meta
ta physica (“Those behind the physical”), hence the name “Metaphysics”. The introduction of
the newly coined term “ontology” became necessary, because the discipline of Metaphysics
became more and more variegated and various sub-disciplines emerged, and “ontology” was
chosen as a new name for what was known since as general metaphysics, i.e. as the study of
being as such, as Aristotle put it. In the twentieth century, then, Willard Van Orman Quine
coined the crisp characterization of Ontology as the study of what there is (Quine, 1948).

Furthermore, the term “ontology” was also used metonymically by philosophers not only
to name a certain scholarly discipline, but also a theory from that discipline, i.e. a set of
claims about “what there is” - about the most fundamental classes of entites in the world. Or,
as another philosopher has more recently put it: “Formal ontologies are theories that attempt
to give precise mathematical formulations of the properties and relations of certain entities”
(Hofweber, 2012). It is in this meaning that the word “ontology” acquired a plural (“ontolo-
gies”) and was combined as well with the indefinite article (“an ontology”) and with number
words (“four ontologies”). From here, the term entered information sciences, as researchers,
especially in Artificial Intelligence, thought it necessary to provide artificial agents with com-
mon assumptions for reasoning about their environment. For a while, the study of ontologies
in information sciences proceeded independently from philosophy. It was only at the turn to
the twenty-first century, that information scientists and philosophers started actively to collab-
orate. In 1998, the first conference on “Formal Ontology and Information Sciences” brought
together researchers from both fields, and by and by the new discipline of Applied Ontology
emerged. Witness thereof is the launch of a new journal by that name in 2006, the publica-
tion of a text-book in 2008 (Munn & Smith, 2008), and the establishment of the International
Organisation for Applied Ontology (IAOA) as a scholarly association in 2009.

8

Thus, the philosophical discipline of ontology is the study of the most general classes or
categories of everything that exists, their dependencies and relations. An ontology is a set of
claims about these classes of beings and the relations among them. Let us now turn to the
specific meaning of “ontology” in information science.

2.2. What Is an Ontology in Information Science?
As we said, the term ’ontology’ became increasingly popular in computer science, where it
was roughly used to denote information artefacts that order, standardize, and describe the
kinds of objects that occur in a domain. There is no terminological consensus about what
criteria exactly an information artefact has to fulfill in order to count as an ontology.

Very influential was the definition by Tom Gruber of an ontology as “an explicit specific-
ation of a conceptualization” (Gruber, 1993). This formulation is as crisp as mysterious, but
Gruber is more elaborate at another occassion, where he writes: “An ontology defines (or
specifies) the concepts, relationships, and other distinctions that are relevant for modeling a
domain. The specification of an ontology takes the form of the definitions of representational
vocabulary (classes, relations, and so forth) that provide meanings for the vocabulary and
formal constraints on its coherent use.” (Gruber, 1993). Other authors deem this definition
too liberal. For them, not any specification of any conceptualization would do, but only “a
formally explicit specification of a shared conceptualization” (Studer et al., 1998).

These restrictions seem to be obvious when it comes to information technical support of,
say, the life sciences, for only formal specifications can be handled by computers, and only
conceptualizations shared by the scientific community could be relevant for information tech-
nological support of the life sciences. Much more discussion centers around the question
whether the representation of a conceptualization really is the ultimative goal of an ontology,
or whether it is only instrumental in representing the general features of a pre-existing domain
of reality. The latter approach is often dubbed “realism” as opposed to “conceptualism”. In
recent ontological engineering, there are strong advocates of realism (Smith, 2004), but also
fierce critics of this approach (Merrill, 2010).

But again, when it comes to life sciences, we do aim at representing reality: There are real
patients suffering real diseases that should be helped with efficient medical treatment. Thus,
within these guidelines, we understand ontologies as representational artefacts that attempt ’to
give precise mathematical formulations of the properties and relations of entities in a domain’
[Stanford Encyclopedia of Philosophy, Art. Logic and Ontology]. More precisely, it is classes
of entities that are relevant for us, as biology does not aim at describing individuals, but at
stating general truth: it is a nomothetic (“law-stating”) science, not an idiographic (“particular
describing”) science. Biology text books have, e.g., a chapter about the horse, but they do
not have chapters about Fury or Black Beauty. Among the classes of entities that are relevant
for, e.g., biology, there are countable things like cells and organisms, measurable things like
amounts of substances etc., as well as qualities and processes, and, for the use of the scientist,
also all those objects used for materially or virtually representing information (words, books,
files, etc.).

9

2.3. What Is an Ontology?
In information sciences, ontologies are special information artefacts. There are various types
of information artefacts. Computer programmes, for example, contain algorithms and com-
mands that have to be executed by a computer to fulfil certain tasks. Databases, on the other
hand, do not contain commands; they are not “executable”. While computer programmes con-
tain prescriptive information, databases are rather of a descriptive nature. A patient database
in a hospital, e.g., contains a lot of descriptive information about the hospital’s patients. Onto-
logies are also of a descriptive nature. As we will use the term in these guidelines, ontologies
do not contain information about individual patients and their individual patient histories, but
rather information about types: types of living beings, types of diseases, types of treatments
and so on. That is, we arrive at the following defintion: Ontologies are information artefacts
that attempt to give precise formulations of the properties and relations of certain types of
entities (Hofweber, 2012).

Good ontologies are formal, explicit and adequate:

• Good ontologies are formal: The meaning of terms in an ontology is unambiguously
defined to avoid misunderstanding and stated using mathematical axioms and definitions
that enable automated reasoning.

• Good ontologies use explicit specifications to make domain assumptions explicit for
reasoning and support human understanding of a domain.

• Good ontologies are adequate to the domain to be represented and thus have to reflect
current scientific knowledge available about the domain to be modelled.

2.4. Why Do We Build and Use Ontologies?
It is a commonplace that we live in the age of information. Nobody can keep track of the
masses of scientific publications in a single discipline, let alone survey the results of science in
general. To make this knowledge more available to the scientific community, documentation
scientists have developed large systems of thesauri (like MeSH, Medical Subject Headings,
developed by the US based National Library of Medicine) or standardized terminologies (like
SNOMED, the Systematized Nomenclature of Medicine, developed by the College of Amer-
ican Pathologists). But terminologies have to cope with problems deeply routed within human
languages. There are, as already observed by the pre-socratic philosopher Democritus, syn-
onyms, homonyms and anonyms: Some things have more than one term that denotes them,
some terms can denote quite different things, and for some things there are no terms at all
(or, at least, no terms at present). One strategy to avoid this problem is to set up ontologies
instead of terminologies: No longer to catalogue the terms scientist speak about, but to make
catalogues of the things they speak about using these terms.

The commonplace about the ever larger amounts of information is true in particular for the
life sciences, as they deal with highly variegated and complex phenomena. There are millions
of species, each of which has its peculiar repertoire of organs and traits, of genes, proteins

10

Table 2.1.: Example ontologies
Name Primary use Number of representational units

Gene Ontology (GO) annotation of gene-related information 37392 1

SNOMED CT medical documentation 295542 2

Int. Class. of Diseases (ICD-10) medical statistics 12.1613

BioTop top-domain ontology 380 4

Basic Formal Ontology (BFO 1) top-level ontology 39 5

and pathways. We cannot help but store our knowledge about life phenomena with the help of
scientific databases, i.e. with computer based knowledge systems.

But once databases for the different aspects of life (like anatomy, genetics, molecular bio-
logy) are set up, we do have silos for our knowledge, but these are separated silos: We cannot
combine the knowledge of anatomists with the knowledge of geneticists. This is, at least in
part, due to the techniques and standards used in coding the respective domains in these data-
bases. In order to achieve interoperability between various information systems (and between
different versions of the same database) we need certain standards, and these standards can,
again, be provided by ontology.

2.5. What an Ontology Is not

2.5.1. Ontology vs. Knowledge Base
In our perspective, ontologies are restricted to represent only those parts of the knowledge of
a domain that fullfil the following criteria:

1. They describe the characteristics that all individual objects of a kind (members of a
class) have in common (universals).

2. They give the precise meaning of domain terms (i.e. what they denote in the world to
be represented).

We emphasize, in accordance with A. Rector (2008), that the really ’interesting’ domain know-
ledge, which is often probabilistic, hypothetic, or context-dependent, is not subject of an onto-
logy. In order to avoid misunderstanding we recommend not to use the term ’knowledge base’
for ontologies.

One can distinguish between four different classes of knowledge and the corresponding
information artefacts for the representation of that knowledge (Schulz et al., 2009):

1geneontology.org, accessed 15.06.2012.
2UMLS, SNOMED CT (version 2011), accessed 15.06.2012.
3de.wikipedia.org/w/index.php?title=Internationale_statistische_Klassifikation_der_Krankheiten_und_ver-

wandter_Gesundheitsprobleme&oldid=106616331, accessed 15.06.2012.
4http://purl.org/biotop/biotop.owl, accessed 15.06.2012, without bridge classes.
5http://ifomis.org/bfo/1.1, accessed 15.06.2012.

11

1. lexico-semantic representation - terminology, thesaurus

2. representation of classes of entities and the properties they have in common - ontology

3. what is typically true in certain contexts - background knowledge

4. knowledge about indidivuals - inventory, e.g. patient database

For terminologies it is customary and often sufficient to have informal representations in the
SPO-form (Subject - Predicate - Object) that is also used in simple English sentences. Such
a format is, e.g., used by the Resource Description Framework (Klyne & Carroll, 2004), that
allows to express such subject-predicate-object triplets. A similar structure is exhibited by the
Unified Medical Language System (UMLS) metathesaurus, where two concepts are linked by
a relational expression. Examples of such triplets would be “Aspirin subclassOf Salicylate”
and “Aspirin prevents Myocardial_Infarction”. Note that the differences between these state-
ments, one expressing a taxonomic relation and the other a probabilistic causal fact, are not
reflected by the triplet format. A statement about language use (not about the entities of the
domain) would also be expressed analoguously: “Hypothermia has_synonym Fever”. If one
wants to “ontologize” statements from such sources, care has to be taken, which ontological
relations are meant by the relational predicate and if these can be expressed in a logically strict
way at all. Ontologies in the stricter sense used in this document always respresent classes of
entities of a domain of the real world.

“Background knowledge” according to Rector (2008) may comprise default knowledge,
presumptive knowledge and probabilistic knowledge. Statements expressing these classes
of knowledge are assumed to be “typically” true under “standard circumstances”, but not
universally true. Examples are “Smoking causes Cancer” or “Hand hasPart Thumb”. The
latter cannot simply be translated into the universal statement, that all instances of Hands have
a thumb as a part, because there are pathological cases of hands that have lost the tumb or never
had one. And the relationship between Smoking and Cancer is obviously not such that every
instance of smoking (or even of the habit of smoking) always causes an instance of cancer.
Rather there is a strong, but only probabilistic correlation between them, so the statement
could either be taken to express relative frequencies in a population or a causal tendency of
smokers to develop certain classes of cancer. These classes of knowledge cannot easily be
expressed within the usual knowledge representation formalisms. Because these statements
are usually not strictly universal, special care has to be taken, if one decides to incorporate
some of it into an ontology. In many cases the commonly used descriptions logics (DL; cf. 3)
are not expressive enough.

Knowledge about individuals is also not dealt with by ontologies in the strict sense, rather
in data structures like patient data bases that may be called “inventories” (see the next section).

The recommendation is that one should not try to incorporate knowledge of classes 1 and
4 in an ontology as this will likely lead to misunderstandings and false inferences. Some
background knowledge can be incorporated into formal ontologies, usually demanding rather
complex expressions and value restrictions, so no general advice is possible in this case.

12

2.5.2. Ontology vs. Inventory
We defined ontologies as information artefacts that attempt to give precise formulations of
the properties and relations of certain types of entities. Much knowledge, however, concerns
individuals. “Black Beauty is a horse” is, however, not a proper ontological assertion ac-
cording to our definition, because it concerns an individual horse. Such knowledge has to be
administered in special databases about individuals, which we could dub “inventories”. An
important example for inventories are patient records, which are nothing else but recordings
about individual treatments of individual diseases of individual patients. Although ontological
relations are often defined with recourse to individuals, ontologies are primarily about classes
of entities, not about individual entities. And though it is often reasonable to connect invent-
ories with respective domain ontologies, both classes of information artefacts are independent
from each other, and we will only focus on ontologies in these guidelines.

2.6. The Elements of Ontologies
Ontologies are information artefacts. They represent types of entities in a given domain. But
they are to be distinguished from the domain they represent. As information artefacts, onto-
logies contain representational units (Smith et al., 2006). In particular, they contain repres-
entational units that denote classes of entities or classes (class symbols) and representational
units that denote relations (relation symbols). While an ontology itself consists of assertions
made by use of these symbols, an ontology is not about these symbols. Ontologies are about
the classes and relations their representational units refer to. That is, they are about certain
features of the world. In a similar vein, a novel consists of a lot of words, but it is not about
these words, but about certain things that happen to the literary characters referred to by those
words. In addition to representational units, ontologies may contain metadata, such as labels,
textual definitions, commentaries or axioms.

2.6.1. Classes of Individuals
The things we encouter in the world, be it in the laboratory or in daily life, are all individual
things (or, for short, individuals). But some individuals resemble each other in certain import-
ant aspects. E.g., they are all red, or water-soluble, or upright-walking rational beings. That
is, they belong to certain classes of entities; they are instances of these classes. For example,
Germany is an instance of the class Country, Fury is an instance of the class Horse, and Cicero
is an instance of the class Human.

In these guidelines, we follow the conventions to capitalise and italizise class symbols,
i.e. those representational units that refer to classes. (See Chapter 5.3 for a comprehensive
overview of recommended naming conventions for ontology development.)

Classes come along in hierarchies. That is, classes may have superclasses and subclasses.
Mammal is a subclass of Vertebrate and a superclass of Horse, etc. This is expressed by the
Relation “subclassOf”:

• Mammal subClassOf Vertebrate

13

• Horse subClassOf Mammal

• Wild horse subClassOf Horse

Normally, classes are defined in order to group individuals that belong together due to shared
properties. (We will put more precision to this issue in later chapters.) Class definitions specify
these properties. Typically, good definitions have the form “an F that is G”. This scheme is
normally ascribed to Aristotle (already hinted at in Plato). It is therefore called the Aristotelian
scheme for definition, because according to Aristotle, a definition is always given through a
close superclass (the genus proximum) and the specific difference (the differentia specifica),
i.e. that feature that distinguishes the class that is to be defined from all other classes of that
superclass. The classical example for this scheme is the traditional definition of Human being
as “rational animal” (an animal that is rational). But the scheme can easily be extended to
other areas:

• A square is a rectangle with four sides of equal length.

• A chronic bronchitis is a bronchitis that is prevalent for at least two years.

It is fundamental to distinguish signs and symbols from the things they signify. Paul has two
legs, while his name “Paul” has no legs, but four letters. Often, these things get confused
not only in everyday speech but also in scientific discourse, not only in computer science in
general but also in ontological engineering in particular. A useful convention to avoid such
use-mention confusion is to always use quotes when mentioning a word instead of using it.
Thus: Germany has 80 million inhabitants and Germany is a country. “Germany”, on the other
hand, has seven letters but no inhabitants and “Germany” is not a country but the name of a
country. And while “the first name of the discoverer of the special theory of relativity” (in
quotes: phrase is mentioned!) is a string of twelve words, the first name of the discoverer of
the special theory of relativity (without quotes: phrase is used!) is a single word, namely the
name “Albert”.

2.6.2. Relations
2.6.2.1. General Remarks

The formal relations between the entities of a domain provide the main structure of an on-
tology. We distinguish properties and relations. Predicates like “blue”, “has mass of 1 g”
correspond to the properties of individuals that are blue or have a mass of 1 g respectively. As
pointed out above individuals sharing such a property form a class. Therefore properties are
often called classes in formal ontologies.

Relations in the proper sense correspond to many-place predicates. In the sentence “The pen
lies on the desk” the two-place predicate “lies on” corresponds to a relation between the pen
and the desk. In “The small intestine is located between the stomach and the large intestine”,
the three-place predicate “located between” expresses the respective ternary relation between
small intestine, stomach and large intestine.

14

For most purposes binary relations are sufficient. And as common DL versions only sup-
port these, we will restrict our discussion to binary relations (somewhat misleadingly called
“Object Properties” in OWL and Protégé). As we are interested in relations that hold between
classes, that is universally between all instances of two respective classes, we will not consider
cases like the individual pen lying on an individual desk. We are only interested in general
or universal relations. Formal ontological relations are formal in the sense that they are not a
further addition to reality but connect entities to more complex segments of reality (Schwarz
& Smith, 2008; Smith et al., 2005). They make basic ontological structures explicit. Some
formal relations express the ontological dependencies between dependent and independent en-
tities, which will be discussed below in chapter 4 (“Upper Level Ontologies”). Generally, a
parsimonious use of relations is highly recommended. Whenever possible, only relations that
are already established in the top-level ontology should be used.

2.6.2.2. Taxonomies

Taxomonies are the most important structures in biomedical ontologies, the “taxonomy tree”
forms the “backbone” of an ontology. Taxonomies are hierarchies of classes structured by
the subclassOf-relation (often also called “is_a”-relation) that expresses subsumption of a
subclass under a superclass, e.g.:

• Dolphin subClassOf Toothed Whale

• Toothed Whale subClassOf Mammal

• Mammal subClassOf Vertebrate

and so on. Both relata of the subClassOf-relation must be classes. The most general class of
a taxonomy tree is often called “root” and the classes at the lowest level, which do not have
further subclasses, are the “leaves” of the tree.

Formal Features of the subClassOf-Relation
• Transitivity: any subclass is necessarily also subsumed by the superclasses of its imme-

diate superclass. If A subClassOf B and B subClassOf C it follows that A subClassOf

C. (If Dolphin subClassOf Toothed Whale and Toothed Whale subClassOf Mammal
then Dolphin subClassOf Mammal.)

• Reflexivity: Every class trivially subsumes itself. A subClassOf A

• Antisymmetry: If A subClassOf B it is false that B subClassOf A unless A = B.

Another important and useful feature of taxononomic hierarchies is inheritance: Subclasses
automatically inherit the properties of their superclasses. Properties asserted for the superclass
do not need to be restated for the subclasses of this superclass.

Semantics of Relations
The semantics of the subclassOf-relation and other relations are explained with the help of
the “instanceOf”-relation. The instanceOf relation is not a relation between classes like all

15

the other relations which we consider in the ontology, but relates individuals to their classes:
“Germany instanceOf Country” 6. Because its relata are instances and classes the relation
is obviously irreflexive (nothing instantiates itself), intransitive (classes are not instances of
classes) and antisymmetric.

Now we can define the subclassOf-relation between classes by means of universal quan-
tification over their instances:

• A subclassOf B if and only if for all x, if x instanceOf A, then x instanceOf B

Because in natural languages the copula “is” is used to express ontologically quite different
things one has to be careful to distinguish the precise ontological relations that capture the dif-
ferent meanings of the word “is” in the natural language. Among other things we express both
the instantiation of a class and the subsumption of a subclass in this way: “Flipper is a dol-
phin” means “Flipper instanceOf dolphin”. But “Dolphin is a mammal”and “Mitochondrion
is a cellular component” express the subclassOf-relation: “Dolphin subclassOf Mammal”,
“Mitochondrion subclassOf Cellular Component”.

2.6.3. Metadata
Like other software artefacts, an ontology may contain metadata about the classes and relations
it contains. Administrative metadata may consist of information about when and why a certain
entry entered the ontology, and editorial metadata captures who the author of the entry was, or
when and why an entry was updated, and who authored the update. Sometimes it might also
be desirable to refer to the source for certain facts that are being encoded in the ontology. In
this case, the meta-data of an entry will contain references to scientific papers or an internet
source. Information about the use of terms, their synonyms etc. are other important metadata,
that are helpful for the understanding of human users but do not belong to a proper ontology.

The ontology editor Protégé, for example, allows for metadata in various foms:

• Annotations of the ontology as a whole, e.g.: backwardCompatibleWith, contributor,
coverage, creator, date, format, incompatibleWith, language, priorVersion, publisher,
rights, seeAlso, subject, versionInfo

• Annotations of single classes or relations: definition, deprecated, identifier, label, syn-
onym

While many of these entries are predominantly for the human users, all of them could in prin-
ciple also be used to support the automated processing of the ontology. Besides the metadata
elements provided by the RDF model itself (Comment, ...) the most important metadata pro-
vider is the Dublin Core (DC) delivering a universal reuseable set of more than 20 metadata
elements available as OWL annotation properties.7 Although not recommended, one’s own
custom tailored annotation properties can be used to store proprietary metadata as well.

6Instances can be independent continuants (like Flipper, patient #456, the left kidney of patient #456), de-
pendent continuants (the individual grey of Flipper’s skin, the weight of patient #456) and processes (Flipper
jumping through a hoop, the surgical procedure for removal of the left kidney of patient #456). Cf. chapter 4.1
on page 28 for details on this distinction.

7http://dublincore.org/documents/dces, 24.09.2012

16

2.7. A Formal Characterization of an Ontology
As we defined an ontology as an information artefact that represents classes of entities and
the relations among them, an ontology needs to contain terms for the classes of entities, terms
for the relations between the entities, and claims to the effect that the relations are asserted
of some entities. These assertions yield a graph-like structure whose nodes represent entity
classes and whose edges represent formal ontological relations between these entity classes.
Such structures can be formally characterized (Bozsak et al., 2002). Typical formal ontological
relations are the subsumption relation is_a and mereological relations like part_of. Thus an
ontology (in the terminology of Bozsak et al. (2002): a “core ontology”) consists of

• at least one entity class (but probably many more)

• at least one formal ontological relation class (but probably some more).

More formally, (the core of) an ontology O is a triple <E, R, I> with

• E a non-empty set of nodes; R a non-empty set of n-adic formal relations

• and I an interpretation function that assigns any n-adic relation from R an extension that
may comprise n-tuples with elements from E.

For short, we will speak of “formal relations”, as opposed to “material relations”; the latter
term will be used for the relational entity classes of an ontology. Though some of the entity
classes can be relation classes, the set of the entity classes and the set of formal relations of an
ontology must always be disjoint. In contemporary ontologies, formal relations are normally
dyadic relations because of the restrictions imposed on them through the description logic
used in these systems. In principle, also relations of higher adicity could be formal relations.
Formal relations may or may not have instances among tuples of entity classes, though from
an engineering perspective there seems to be no point in introducing formal relations that will
not be used in the end. But if we allow for non-instantiated formal relations, then the smallest
possible ontology consists of exactly one entity and exactly one formal relation class with an
empty extension.

17

3. Description Logics (DL)

3.1. What Are Description Logics?
Description Logics (DLs) (Baader et al., 2010) are languages for expressing ontologies in a
structured, computer-interpretable and formally well-understood way. They form the core of
the OWL 2 ontology language.

Ontology engineers thus face two tasks with regard to description logics:

1. They need to make explicit their knowledge about the domain to be modelled and to
represent that knowledge in a formally stringent way.

2. As description logics have a limited expressability they need to adopt this description of
reality to respect the limitations of the description logic dialect in use.

These tasks shouldn’t be underestimated, but the benefit of being able to maintain large scale
ontologies that support automated reasoning can easily offset the care and energy that needs
to be invested in these tasks.

3.2. Description Logics Basics
A Description Logic (DL) allows the specification of a model of reality in terms of classes,
relations, individuals, and the logical connections that exist between them.

In DL, a class is a set of individuals that share some properties. WaterMolecule1 is an
example of a class: There are many individual water molecules and each and every one of
them can be thought of as a member of the class WaterMolecule. Some characteristics of an
individual water molecule are not specific to that molecule but common to all members of
the class (e.g. its molecular weight). These features can be expressed by statements about
the class. For example, an apparent truism about water molecules is the subsumption that
every water molecule is a molecule, which can be rephrased as the following statement about
classes: “(WaterMolecule subClassOf MonoMolecularEntity)”

The relationships between different individuals in an ontology are represented by object
properties and data properties. Object properties express relations between two individuals,
and as such they can also be used to express information about the relationship between differ-
ent kinds of individuals, i.e. classes. For example, hasPhysicalPart is an object property that
can be used to relate a water molecule to an oxygen atom. Since for every water molecule there

1We follow the convention of typesetting class expressions in CamelCase (i.e. uppercase characters at word
boundaries within the expressions) and italics, property expressions in boldface and logical constants in a
fixed-width font.

18

exists an oxygen atom that it is part of, this information can be expressed by the following DL-
Statement: “(WaterMolecule subClassOf hasPhysicalPart some OyxgenAtom)”. According
to the formal grammar of DL, such expressions are always set in brackets in order to avoid
ambiguities in more complex expressions. We strictly adhere to this convention in this chapter,
though often (as in later chapters) the outermost brackets are suppressed.

An additional construct are data properties. They can relate individuals to concrete values,
like their weight or volume. For example, one could express information about the molecular
weight of water in the following way:

WaterMolecule subClassOf bearerOf some
(PhysicalMass and molecularWeightQuantityLocated

value �18.01528� ^^xsd:double)

We will mostly ignore this type of construct.2 In the following sections, ontology engineers
will learn how to correctly employ the language constructs provided by Description Logics
when designing ontologies.

3.3. Description Logics: Syntax and Semantics
As with every well defined logic, Description Logics are described by specifying both their
syntax and their semantics. The syntax determines the ’alphabet’ of symbols that are allowed
and a set of rules to build complex expressions from the letters of the alphabet. The semantics
of DL specify the precise meaning of the expressions that conform to the rules of the syntax.
Different syntactical dialects however can be used without changing the semantics of the logic.
OWL 2 defines, for example, four syntactic dialects that are fit to express the semantics of an
OWL 2 ontology (Motik et al., 2009). The syntax presented here is a variant of the so called
’Manchester Syntax’, which is designed to be very easy to understand by the user and is also
used in the Protégé ontology editor.

3.3.1. Working with Classes
Basic Class Descriptions Modellers will make use of top-level ontologies to populate
their ontologies with important classes.3 The root of the taxonomy in every OWL ontology is
formed by the class Thing, which encompasses everything in the domain to be modelled. All
classes added by designers of top-level ontologies and by domain modellers descend from that
root (i.e. everthing is a Thing). We will now discuss the tools available to modellers to add
further classes with specified semantics as subclasses of those inherited from other ontologies.

2The reason for this disregard is twofold. On the one hand, present versions of OWL 2 restrict the use of XML
Schema Datatypes to those defined in XSD (and a few OWL specific ones). On the other hand, the treatment
of units (centimeter, kilogram, joule) attached to data properties as well as their conversion is undefined so
that they are less useful than they would be in the general case.

3Tip for users of the Protégé ontology editor: The taxonomic relationships between classes are presented by
Protégé in a tree like manner on the left side of the “Classes” tab.

19

A

B

Figure 3.1.: (B subClassOf A)

B≡A

Figure 3.2.: (B equivalentTo A)

One major construct for this purpose is the subClassOf operator, which allows modellers
to specify that every member of one class is also a member of the other (cf. Fig. 3.1). This
means that every assertion that is true of the superclass (on the right side of the expression)
is also true about the subclass (on the left side). For example, “(WaterMolecule subClassOf
MonoMolecularEntity)” is compliant with this doctrine, i.e. there are no water molecules
that are not at the same time mono-molecular entities.4 When creating subclasses, modellers
should always adhere to the principles specified in sections 2.6.2.2 and 5.4.

Usually it is even more useful to not only specify that a class B is a subclass of another
class, but also to state the exact conditions of what it means to be a member of B. This can
be achieved by specifying the conditions in a complex class expression and asserting that B is
equivalent to the complex class. In Manchester syntax this reads: “(B equivalentTo A)”.
Semantically, both classes will always contain the same individuals (cf. Fig. 3.2). These
classes are called “defined” or “equivalent classes”.5 In the class tree, classes that have this
kind of definition are marked with three stacked horizontal lines (“≡”), which is the logical
symbol for equivalence.

Two other important constructs to describe the relationships of a given class are the �Dis-

jointWith:�- and �DisjointUnionOf:�-operators. The first allows modellers to specify
that two classes do not overlap and hence do not share any members (cf. Fig. 3.3). This would
be, for example, the case with the following statement “(SubatomicParticle DisjointWith:

MonoMolecularEntity)”. The �DisjointUnionOf:�-operator is similarly useful because it

4 Tip for users of the Protégé ontology editor: �subClassOf� statements can be added explicitly by adding
superclass axioms but also implicitly generated by using the “Add subclass” icon to insert a new class below
an existing one.

5Tip for users of the Protégé ontology editor: The name “equivalent classes” is also used in the class inspector
of Protégé.

20

A B

Figure 3.3.: (A DisjointWith: B)

B C

A

Figure 3.4.: (A DisjointUnionOf: B, C)

allows one to specify that a set of subclasses jointly exhausts their superclass while being pair-
wise disjoint with one another (cf. Fig. 3.4). For example, one would include the following
assertion in an ontology: “(SubatomicParticle DisjointUnionOf: Proton, Electron, Neut-
ron)” to specify that every subatomic particle is either a proton, an electron or a neutron, but
not, say, a proton and an electron at the same time. For more information about this subject,
please refer to section 5.4.1 on page 55.

Complex Class Expressions Indisputably, the facility to define equivalent classes is
only useful if there is a way to generate complex class expressions. We will now turn to the
basic facilities available for creating complex class expressions from more primitive ones. One
of them is the “and”-operator, which takes two classes and uses them to build a new one that
encompasses only those individuals which are present in both (cf. Fig. 3.5). For example the
class (EntireMolecularEntity and OrganicMolecularEntity) would have all and only entire
organic molecules as its members.

Likewise, modellers can create a new class by specifying it as the union of two existing
classes: (A or B). Individuals from this class will either be members of the class A or of the
class B or of both classes (cf. Fig. 3.6 on the next page). The corresponding operator is hence
called “or”. This operator has many important uses. For example, it is needed to specify that
a class is exhausted by its subclasses (e.g. that all members of the class A only come from
the subclasses B1, or B2, or B3, cf. section 5.4.1 on page 55, this can also be expressed using
the ”DisjointUnionOf:“-operator). In other cases, modellers should be cautious about the
use of the operator, because very often the constructed class will not correspond to a proper
feature of the domain to be modelled.

21

A B

Figure 3.5.: (A and B)

A B

Figure 3.6.: (A or B)

Another construct that should only be used sparsely is the “not” operator. It can be used
to construct classes that only contain those individuals which are not members of another
class (cf. Fig. 3.7). For example, the class “(not MonoMolecularEntity)” would contain
everything but monomolecules. Hence, all protons, horses, one dollar bills, and the part of
London that lies south of the river Thames would all be members of this class. One can easily
see that the individuals belonging to a class created by negation do not necessarily share any
common features, an effect that is undesirable in a formal ontology. Modellers should only
use such classes judiciously.

A

Figure 3.7.: (not A)

22

3.3.2. Working with Data and Object Properties
Top-level ontologies usually come with a variety of object properties that modellers can use.
To avoid interoperability problems, these object properties should be used instead of defining
many new ones for limited tasks. Thus modellers do not need to know how to create them, but
they do need to be competent in evaluating their meaning.

Basic Property Descriptions Object and data properties specify the connection between
individuals in an ontology or between individuals and extra-ontological, concrete values such
as strings, integers, dates, etc. Every property has a domain and a range, which specify the
classes the individuals connected by the property are members of. For example, the object
property “hasParticipant” might have the class Process as its domain (because only indi-
vidual processes have participants) and MaterialObject as its range (because only material
objects can participate in processes). A property like this would have a Manchester syntax
representation as follows:6

ObjectProperty: hasParticipant
Domain: Process
Range: MaterialObject

Properties can also be arranged in hierarchies similar to the hierarchy of classes by using the
subPropertyOf axiom. For example, “hasAgent subPropertyOf hasParticipant” would
declare that every pair of individuals connected through hasAgent is als connected by has-
Participant (but not necessarily the other way round), specifying that every agent is also a
participant. Properties can also be described as equivalentTo and DisjointWith:, just as
classes can be.

The definition of a property can be further enriched by specifying the characteristics of the
property using the “Characteristics:” statement. This allows additional constraints to be
placed on the property, for example that it is functional (i.e. for every individual in the domain,
there is at most one individual in the range) or transitive. Transitivity one of the more useful
property characteristics and allows modellers to state that if the property hasProperPhysical-
Part obtains between a cell and its nucleus and between the nucleus and the contained DNA,
the property also obtains between the cell and the DNA. For a complete list of possible prop-
erty characterisations please refer to table 3.1 on the following page. Data properties only
allow for the “Functional” characteristic.

For object properties, modellers can also specify the inverse of a property. For example, the
inverse of hasParticipant would be participatesIn. Specifying the axiom “hasParticipant
inverseOf participatesIn” means the following: The individuals of every pair connected
by hasParticipant are, in reverse order, also connected by participatesIn. So if “tissue
growth #12 hasParticipant cell #43” was asserted, “cell #43 participatesIn tissue growth
#12” would also be asserted.

6Tip for users of the Protégé ontology editor: Properties can be added by using the “Add subproperty”-icon in
the (object or data) property tab. The property description inspector will contain fields for specifying domain
and range.

23

Charateristic Definition
Functional For every x, y1, y2, if xRy1 and xRy2 then y1 = y2.

InverseFunctional For every x1, x2, y, if x1Ry and x2Ry, then x1 = x2.
Transitive For every x,y,z, if xRy and yRz, then xRz.
Symmetric For every x,y if xRy then yRx.
Asymmetric For every x,y if xRy then not yRx.
Reflexive For every x,xRx.

Irreflexive For every x, not xRx.

Table 3.1.: OWL 2 Property Characteristics

Complex modelling with properties can also include chains of object properties, where the
connection between two individuals by means of a property can be expressed by a chain of
other properties. For example, one might want to use the property hasLocus not only to
specify the locations of material objects but also of processes. Since processes are located
at the locations of their participants (e.g. the chess match is located where the players are
located), this might be achieved by including the following statement in the definition of the
property: “ hasParticipant o hasLocus SubPropertyOf hasLocus”, where the “o” is the
operator for forming the chain link.

Building Classes using Data and Object Properties With help of some additional
constructs, data and object properties can be used to generate complex class expressions. This
is a powerful way to add additional axes of classification to an otherwise pure taxonomic
ontology.

Since property expressions always take two partners (two individuals for object properties
or an individual and a value for data properties), generating classes is done by fixing one of
them. There is a number of constructs available to do this:

• Value restriction: Value restriction builds a class encompassing all individuals that
are connected only to individuals of the class C by means of a given property R by
writing “(R only C)”. Since R corresponds to a verb phrase (e.g. “hasParticipant”
or “hasPhysicalPart”), such expressions can be read quite alike. For example, the
expression “(hasProperPhysicalPart only SubAtomicParticle)” might be useful when
defining the class Atom.
Modellers should note that the semantics of value restriction are such that it does not
imply that an individual from the named class actually stands in the required relation for
the property to hold. In our example it only specifies that, if an individual of the class has
proper parts at all, they are from the SubAtomicParticle class. If one wants to require
the existence of the individuals named, one has to employ additional constructs. For
example, if a process is restricted by the statement “(hasParticipant only Unicorn)”,
this does not imply that unicorns exist.

• Existential quantification: Existential quantification can be used to define classes
whose members require the existence of other individuals. For example, the class Phos-

24

phorylation will incorporate in its definition the claim to the existence of at least one
phosphate molecule that participates in the process. This can be written as “(hasParti-
cipant some Phosphate)”. When using existential quantification, it is crucial to keep
in mind that it commits one to the existence of additional individuals to the ontology.
(Note the difference to value restriction.)

• Number restriction: Existential quantification has some more specific variants that
allow modellers not only to specify that an individual exists but also the number of
individuals. For example, to define what it means to be a water molecule, one must spe-
cify that it contains exactly two hydrogen atoms. This can be done with the “exactly”
keyword followed by the number of individuals required: “(hasPhysicalPart exactly
2 HydrogenAtom)”. The keywords “max” and “min” can be employed in the exact same
way. Hence, obviously, “((hasPhysicalPart max 2HydrogenAtom) and (hasPhysical-
Part min 2 HydrogenAtom))” would be equivalent to the previous statement.

• Concrete values: For data properties, the additional keyword “value” can be used
to build classes that require a relation to a concrete value. For example, “(molecular-
WeightQuantityLocated value �18.01528�^^xsd:double)” would describe the class
of all individuals with a molecular weight of 18.01528 (e.g. water molecules). In this
expression “xsd:double” describes the datatype of the value (in this case a double pre-
cision floating point number). The correct usage of such datatypes is, however, beyond
the scope of this document.

3.4. DL Ontology Pitfalls

The Open-World Assumption
Characterised this way, DL ontologies exhibit a few features that lead to remarkable differ-
ences to other systems that are used to store structured information: In relational databases,
for example, the absence of a fact from the database implies that this fact is false. This beha-
viour is usually described as closed-world assumption: A relational database assumes that it
knows everything about the world; things it is not explicitly told about must thus be false.

An OWL 2 ontology on the other hand uses so called open-world semantics: If a given fact
is not present in an ontology, it is simply not known and hence still might be true. This also
means that the system will try to answer queries based on what is compatible with what it
knows. For example, suppose an ontology contains the following class description.

Class: OxygenMolecule
equivalentTo hasPhysicalPart exactly 2 OyxgenAtom

This class description might seem valid, but it is in fact too broad to capture what it means to
be an oxygen molecule. While it succeeds in excluding ozone molecules to be classified as
oyxgen molecules (since they consist of three oxygen atoms), it does not exclude any molecule
that has exactly two oxygen atoms and an unspecified number of other atoms, e.g. nitrous
acid (HNO2). The reason for this is that having a nitrogen and a hydrogen atom as parts is

25

compatible with what the system knows about oxygen molecules. Additional statements need
to be added to the class description in order to specify that an oxygen molecule consists of
exactly two oxygen atoms and nothing else. For more information about this, please refer
to 6.3.2 on page 66 which deals with an ontology design pattern called closure.

No Unique-Name Assumption
Another peculiar feature of DL systems such as OWL 2 is that they lack the so called unique
name assumption: Two individual names may be shown to refer to the same object in the
model. This is usually only a problem when dealing with individuals in an ontology, which
modellers are advised not to do. For example, if one were to add an oxygen molecule called
“Alice” to an ontology, and three oxygen atoms called “Bob”, “Charlie”, and “Dave”, one
would expect to derive a contradiction if each of them is said to be a part of Alice (because
oxygen molecules only can only have two atoms). This expectation is mistaken: In this case,
the reasoner will derive that either Bob and Charlie or Charlie and Dave are the same atom.

26

4. Upper-Level Ontology

There are various classifications of ontologies (Fig. 4.1). In this chapter, the following types
are distinguished (Stenzhorn et al., 2007):

• A top-level ontology introduces general types (kinds, universals) and definitions that
help unambiguously categorise the entities of the world into top level categories or
classes. The number of top level categories is generally restricted and domain inde-
pendent, such as Function or Material Object. Furthermore, most upper level categories
provide a basic set of relations such as partOf or hasQuality together with axioms that
restrict the use of these relations to entities of a certain kind (Stenzhorn et al., 2007).
Examples for top-level ontologies are BFO (Grenon et al., 2004) and DOLCE (section
4.2) (Gangemi et al., 2002).

• An upper-domain ontology holds the essential core domain classes as an interface
between both top-level and domain ontologies, like Organism, Tissue or Cell in the
case of biology. An upper-domain ontology can also include more specific relations
and further expand or restrict the applicability of relations introduced by the top-level
ontology. An example for this kind of ontologies is BioTop (section 4.3) (Beisswanger
et al., 2008).

• A domain ontology includes a multitude of low-level, domain-specific classes that com-
prehensively describe a certain (aspect of a) domain of interest, like, e.g., Antisense RNA
Transcription or DNA Replication from the Gene Ontology.

Figure 4.1.: The three levels of generality of a domain ontology

In the following, we will focus on classes that belong either to a top-level or an upper-
domain ontology, as introduced above. Beginning with the question what, if anything, are the
most general kinds of being we will discuss this question with reference to the categories of
Aristotle, the first philosopher who is known to have asked this question. Starting from this,
we will derive three basic dichotomies that can serve as principles to generate upper ontolo-
gies. We will then present two of the most important suggestions for top-level ontologies, i.e.

27

Table 4.1.: Aristotle’s Ten Categories
Modern or Latin Term English Translation/Thematic Question

essence What is it?
quantum, quantity How much?

quality How is it?
relation Related to what?
place Where?
time When?

position, posture How is it situated?
habitus Having, Owning
agere What does it do? What actions does it produce?
pati What does it suffer from? How is it acted upon?

the Basic Formal Ontology (BFO) and the Descriptive Ontology for Linguistic and Cognit-
ive Engineering (DOLCE), as well as BioTop, an upper-domain ontology for the biomedical
domain.

4.1. What Are the Most General Kinds of Being?

4.1.1. Starting with Aristotle
When starting to construct an ontology from the top, we have to start with the most general
kinds of being. In philosophy, such most general (and thus most basic) kinds of beings are
called categories. The first to compile such a list of upmost categories was Aristotle (384–322
BC), the founding father of ontology (cf. Table 4.1). Aristotle names many of his categories
according to the interrogative expressions one would use to ask questions whose answers
would make reference to entities in the respective categories.

For his list, Aristotle seems to have proceeded on the basis of his experience in dialect-
ical exercises and philosophical discussions. This explains the disparity of Aristotle’s list of
categories, the elements of which are not all of the same standing. There are two important
ways in which Aristotle’s categories fall into disparate groups. Some of them require a bearer
without which they cannot exist, while others do not need a bearer but are themselves bearers
of other entities; thus entities divide into dependent as well as independent entities (section
4.1.2). Moreover, some entities exist as a whole at every moment they do exist, while others
stretch out in time; this divides entities into continuants as well as occurrents (section 4.1.3).
These are already the two most important ontological dichotomies that can be used as prin-
ciples of a top-level ontology. Finally we will introduce a third dichotomy, that is orthogonal
to the other two: the distinction between universals (or classes) and individuals (section 4.1.4).

28

4.1.2. Dependent and Independent Entities
The criterion of ontological dependence is used by Aristotle to give special ontological status
to the first category (“what is it?”) in Table 4.1, so-called individual substances. Everything
else in the list in Table 4.1 is dependent on the individual substances. (You cannot sensibly an-
swer questions like “How much is it?”,”Where is it?”, “How is it?” etc. unless you say of what
these questions are asked.) Therefore the ten categories are not to be viewed as equals; rather,
the individual substances are presupposed by the other categories. Customarily, the dependent
categories are called accidents that inhere in the substances. A smile, a certain height, or a cer-
tain color always need a bearer to exist. It is not possible for someone to disappear and leave
his smile behind. The height of a tree cannot continue to exist when the tree is destroyed. The
color of a rabbit cannot remain in a room when the rabbit is taken out of the room. The smile,
the height, and the color are dependent for their existence upon a bearer, a substance which
has this smile, this height, or this color, among its properties. Let us summarize: Substances
do not need the entities of other categories in order to exist, whereas the entities of the other
categories require entities from the first category for their existence. For this reason substances
are ontologically independent of accidents, while accidents are ontologically dependent upon
substances. The notion of ontological dependence can be formally captured by the following
criteria:

Definition of. rigid dependence: An entity x is rigidly ontologically dependent upon an
entity y, if y could not exist if y did not exist, such as a person’s body mass.

Definition of generic dependence: An entity x is generically ontologically dependent
upon entities of the type F, if x could not exist if no entity of type F did exist. An
example is a piece of literature. It cannot exist without the paper on which it is printed,
or the computer memory where it is digitally stored. However, it does not have to be the
same paper, or the same computer memory.

The group of dependent entities can be further divided into relational and non-relational en-
tities. Relational entities are those that are ontologically dependent on multiple bearers, while
non-relational entities are those that are ontologically dependent upon one bearer only (Jansen,
2006; Smith & Ceusters, 2007).

4.1.3. Continuants and Occurrents
Another important distinction can be made by observing that the Aristotelian categories “ac-
tion” and “passion” differ in an important way from the others. Whereas a substance such as
a bacterium, a quantity such as a length of 20 meters, or a quality such as red, exist as a whole
at every point in time at which they exist at all, the existence of actions and passions is spread
out over the course of some time interval. Whenever we encounter a bacterium, we encounter
the whole bacterium at each point in time over the course of the bacterium’s life. The pro-
cess by which a bacterium reproduces, by contrast, takes place within time. The process of
reproduction has a beginning and an end; it is composed of temporal parts, i.e. various phases
that follow one another in time. By contrast, the bacterium has spatial parts – for example,

29

a DNA, a membrane, and a cytoplasm – which exist at one and the same time. Hence, we
see that there are two kinds of entities that stand in intimate relation to one another, namely:
(1) an organism and (2) its life or history. The organism itself is present as a whole at every
point of its existence, while the life of the organism is spread out over multiple points in time.
Entities without temporal parts which continue to exist through time like an organism we call
continuants. Entities which unfold in time, that is, have different temporal parts, are things
that occur in time and are called occurrents (Johnson, 1921). We need both continuants and
occurrents in order to represent reality adequately.

If we picture the world at any single point in time, we will discover people, animals, arte-
facts, colours, sizes, and relations in our picture. But changes, processes, and events that are
taking place at that point in time will not be visible. In order to represent these, we need a
sequence of pictures instead of a single picture; we need a film. To obtain a complete picture
of our ever changing world, we thus need two kinds of representation. On the one hand, we
need “snapshots” of the world at individual points in time, which capture the continuants. Let
us call such snapshots SNAP ontologies (Grenon & Smith, 2004). Included among SNAP
entities are substances, quantities, qualities, relations, as well as the boundaries of substances,
collections of substances, places such as niches and holes, and spatial regions such as points,
lines, surfaces, and volumes. Additionally, SNAP ontologies comprise also the instantan-
eously existing instances of qualities and quantities which would otherwise be ontologically
homeless. On the other hand, we need a representation of change, something like a film which
represents entire time spans. We will call these SPAN ontologies (Grenon & Smith, 2004).
Included among SPAN entities are processes and events, temporal regions such as time inter-
vals with time points as their boundaries, as well as spatiotemporal regions. Time points, in
spite of their lack of temporal extension, belong to the SPAN ontology and not to the SNAP
ontology. A single SNAP ontology, which represents the world at a given point in time, is
linked to this time point as to its date, but does not contain this time point as one of the entities
in its coverage domain. Ontologies in information science may comprise only SNAP entities
or only SPAN entities, but they may as well comprise entities from both categories.

4.1.4. Classes and Their Members
In addition to the two ontological dichotomies already discussed – independent vs. depend-
ent entities, continuants vs. occurrents – there is also a third: that between universals and
particulars, or classes and their members. The test for being a class is that the corresponding
expression can be predicated of another entity. In contrast, particular entities that are members
of classes, such as Socrates or my height, cannot be attributed to other entities. Sentences that
contain as predicates the expressions ‘is Cicero’ or ‘is my height’ are not predications in the
technical sense, but rather identity claims like ‘Tully is Cicero’ or ‘Five feet is my height’.
A general expression such as ‘human’ can appear both as the subject and as the predicate of
predicative assertions, as in ‘A human is a vertebrate’, and ‘Cicero is a human’. It is important
to note that unlike in set theory, we do not have classes of classes: Classes and members are
distinct, and no class is ever a member of another class. This contrast of members and classes
has its foundation in the nature of things, and is not an arbitrary choice of the modeller.

30

Table 4.2.: The Ontological Square

substantial
not in a subject

accidental,
non-substantial

in a subject

universal,
general

Predicated of a
subject

III.
substance universals

Human being
Horse

IV.
non-substance

universals
Being white

Knowing

individual
Not predicated of

a subject

I.
individual substances

This human being
This horse

II.
individual accidents

This individual
whiteness

This individual
knowing

Taken together with the distinction between inhering and non-inhering entities, this yields
a fourfold distinction of entities, the so-called ontological square (Figure 4.3). Universals cor-
respond to general classes of objects in a domain and instances to the members of these classes.
It is important to note that only “natural” classes correspond to universals, not arbitrary sets
(cf. the design principles discussed in 5.4).

We need all four cells of the ontological square in order to capture the whole reality. This
is in agreement with the commonsensical understanding of most people. In daily life, we
assume that Barack Obama (field I) exists as well as the species elephant (field III), the virtue
of courage (field IV), and the individual white colour of my skin, which ceases to exist at some
time in summer, when my skin takes on a brown colour instead (field II). There are some basic
relations that obtain among entities in the four fields of the ontological square:

• Individual accidents inhere in individual substances.

• Non-substance (accident) universals characterize substance universals.

• Individual substances instantiate substance universals.

• Individual accidents instantiate non-substance (accident) universals.

• Individual substances exemplify non-substance (accident) universals.

A picture of the world which did not provide a special place for occurrents would be incom-
plete. There are also important relations that obtain between occurrents and continuants, for
individual substances take part in individual processes. We can thus expand the ontological
square to an ontological sextet, which can be illustrated in Figure 4.2 (Smith, 2005). The rela-
tions of inherence, exemplification, instantiation, and participation govern the relations among
the entities in these four fields.

31

Substance
Universal

Substance
Particular

Individual
Property

Individual
Process

Property
Universal

Process
Universal

instantiates instantiates instantiates

inheres in

examplifies

characterizes

participates
in

Figure 4.2.: The Ontological Sextet and Its Formal Ontological Relations

4.2. Two Important Top-Level Ontologies

4.2.1. BFO: Basic Formal Ontology
BFO, the Basic Formal Ontology, has been developed by the research group of Barry Smith
at the Institute for Formal Ontology and Medical Information Science (IFOMIS), starting
in Leipzig and continuing in Saarbrücken. BFO is a formal theory of the basic structures
of reality. It is based on the Aristotelian background laid out in the preceding section. In
fact, the basic principle of BFO is a “meta-ontological” combination of several ontologies.
Among these are a series of SNAP-ontologies that represents the classes of continuants that
are instantiated at certain points in time, together with a SPAN-ontology that contains all the
classes of occurrents (Spear, 2006). (BFO is currently under further development; this section
describes the current version 1.1. BFO 2.0 will come with additional classes and will also
include formal relations.)

The main SNAP-categories of BFO are

• Independent Continuant with subclasses Object, Object Aggregate, Site, Boundary and
Part of Object,

• Dependent Continuant with subclasses Quality and Realizable (with subclasses Func-
tion, Role and Disposition),

• Spatial Regions with subclasses in several dimensions: Volume, Surface, Line and Point.

The main SPAN-categories of BFO are

32

Figure 4.3.: The BFO SNAP Categories

Figure 4.4.: The BFO SPAN Categories

• Processual Entity with subclasses Process as well as Process Aggregate, Process Part,
Processual Context and Boundary of Process,

• Spatiotemporal Region with subclasses Scattered Spatiotemporal Region and Connected
Spatiotemporal Region (with subclasses Spatiotemporal Interval and Spatiotemporal
Instant),

• Temporal Region with subclasses Scattered Temporal Region and Connected Temporal
Region (with subclasses Temporal Interval and Temporal Instant).

These categories are intended to be domain-independent, and anything included in a domain
ontology should be subsumed under one of these top-level categories.

33

DOLCE BFO
Endurant SNAP-Entity

Perdurant/Occurrence Process or Process aggregate or Fiat Part of Process
Physical Quality Dependent Continuant
Temporal Region Temporal Region

Spatial Region Spatial Region
Physical Substantial Independent Continuant

Table 4.3.: Comparison of DOLCE and BFO

4.2.2. DOLCE: Descriptive Ontology for Linguistic and Cognitive
Engineering

The Descriptive Ontology for Linguistic and Cognitive Engineering, mostly named by its
acronym “DOLCE”, is a top level ontology aimed at capturing the ontological categories un-
derlying natural language and commonsense. It has been developed by Nicola Guarino and
his associates at the Laboratory for Applied Ontology (LOA) in Trento (Masolo et al., 2003).

DOLCE has a “cognitive bias”, that is, DOLCE differs from BFO in not being committed to
uncover the intrinsic nature of the world (which might be hidden from us), but only the overt
structure of human thoughts and language. DOLCE is also based on a broadly Aristotelian
background(Gangemi et al., 2002), though it deviates from BFO in several respects (Grenon,
2003). Some correspondences between BFO and DOLCE are listed in Table 4.3.

In spite of these striking similarities, there are also a number of differences between these
two top-level ontologies:

• In BFO, there are no categories for abstract entities, nor for non-physical entities like
mental or social objects.

• In BFO, there are no quality regions (values) qualities are located in. In BFO the quality
regions from DOLCE are subclasses of a specific quality.

• In DOLCE, processes can have qualities, whereas in BFO not. (In BFO 2.0, modifiers
of processes are being discussed to be included as so-called process profiles.)

• In DOLCE, all regions are abstract entities, even spatial and temporal regions.

• In BFO, there is no further sub-classifications of processes, which might be due to the
fact that the criteria used for this purpose by DOLCE are highly language-dependent.

4.3. BioTop: An Upper-Domain Ontology for the Life
Sciences

BioTop is an upper-domain ontology which is designed to support ontology developers with
an ontological framework for the life sciences. BioTop is considered complete with regard to

34

Figure 4.5.: DOLCE basic categories1

35

the set of given upper level classes and formal relations, so that developers only need to add
subclasses to existing classes and to formulate axioms using existing relations.

BioTop classes and relations can be related to BFO classes as well as to DOLCE classes and
relations when necessary. However, BioTop is primarily designed to be used as a standalone
top-level ontology, and the labelling of its classes and relations is intended to facilitate its use.
The upper level of BioTop is available as BioTop-Lite, a version of BioTop with a reduced set
of classes. The expressiveness of BioTop is limited to OWL DL.

BioTop, Biotop-Lite and bridge files to import BFO and DOLCE as top level-ontologies can
be downloaded from the BioTop website2 where also documentation and related publications
can be obtained. BioTop has been developed by the Institute of Medical Biometry and Medical
Informatics (IMBI) at the University Medical Center Freiburg, Germany, and the Department
of Computer Linguistics at the University of Jena, Germany. It is still under active develop-
ment and is maintained by the Institute of Medical Informatics, Statistics and Documentation
at the Medical University Graz, Austria, and the IMBI, Freiburg, Germany.

4.3.1. The Structure of BioTop
The general organization of BioTop follows the main principles of the top-level ontologies
BFO and DOLCE. On the uppermost level, BioTop has only the classes Particular and DE-
PRECATED. The latter contains classes of former BioTop releases that have been retired, but
which are preserved for downwards compatibility. Thus, the top-level class in effect is Partic-
ular with ten subclasses (Fig: 4.6). Of these subclasses, six are classes for continuant entities:

• MaterialObject: A material object is a continuant entity that has exactly one mass value
and one volume at a time. However, material objects may have immaterial objects as
parts, e.g. the heart has ventricles as a part.

• ImmaterialObject: All continuants of spatial relevance, such as points (zero-dimensional),
lines (one-dimensional), planes (two-dimensional), and spaces (three-dimensional). They
have an n-dimensional structure but no mass.

• InformationObject: Piece of information (not necessarily human), as it exists independ-
ently of any specific material carrier, such as the information contained in a book or in
a computer file.

• Disposition: In contrast to qualities, a disposition is a realizable entity. This entails
that it becomes manifest in some process. Which kind of process this is, depends on
the physical make-up of the bearer of this process. The bearer of the disposition par-
ticipates in the realized process as an agent. For instance, the fur colour of a mouse is
not a realizable entity because it is just there and does not give rise to any processual
manifestation. In contrast, an adult mouse’s ability to reproduce is a realizable entity.
The ability is there, but not necessarily its manifestation, i.e. the reproduction process
that could take place for every instance of an adult mouse. A mouse has this ability to

2http://purl.org/biotop/, 21.09.2012

36

reproduce even if it never does; just as a glass has the disposition to break even if it
never breaks.

• Role: In contrast to dispositions, a role is a realizable entity the manifestation of which
brings about some result or end that is not essential to its bearer. This manifestation can
be exhibited in some kinds of natural, social or institutional contexts. An example is a
human’s role of a student or a patient; or a molecule’s role of a substrate or a product
(of some (bio-)chemical process).

• ValueRegion: Value region is a spatial, temporal or abstract region in which values of
qualities (see below) are located. Examples are the value ‘green’ as a value of colour, or
the value ‘78 kg’ of my body mass.

Two of the subclasses of Particular contain only occurrent entities:

• Process: A process is an occurrent. It has temporal parts. This means that not all of its
parts are simultaneously present. Processes have material objects or immaterial objects
as participants.

• Time: Time means a point or interval on the time axis, such as the 1st of January 2012,
or the moment of an organism’s death.

Two more subclasses of Particular may contain continuant as well as occurrent entities:

• Quality: A quality is an entity that characterizes some other entity but cannot exist
independently of the former. An example is the body mass, or the green colour of a leaf.

• Condition: This class has been added as the union class of MaterialObject, Process
and Disposition in order to represent the ambiguous nature of what is usually related as
condition in the context of medicine. Here, many key terms denote entities of different
kinds, such as ‘tumor’, which can be interpreted as a mass of malignant tissue, but also
as a pathological process. Or the word ‘allergy’, which is used to denote an allergic
disposition as well as an allergic reaction: Patients would say they are allergic to pollen
even in winter when there are no pollen and they are not sick. The same wording will
be used to refer to an acute allergic reaction in spring. The condition class therefore
provides a place where classes can be put which represent the things ambiguous terms
denote, without having do resolve the ambiguity.

All classes with the exception of Condition are mutually disjoint.
BioTop also introduces a set of relations. As BioTop uses many of the more expressive fea-

tures provided by OWL 2, some significant restrictions need to be mentioned. All relations are
OWL object properties, i.e. binary relations between individuals. Apart from the hierarchy-
building SubClassOf-relation there are no relations between classes in BioTop. Expressions
such as ClassA rel ClassB are syntactically wrong and semantically meaningless (see chapter
3 on Description Logics). Furthermore, ternary relations, such as partOf (a, b, t), with time
as a third argument are not possible. Relational statements between continuants are therefore
always interpreted as holding for any time. For instance, the axiom

37

Cell subClassOf hasPart some CellMembrane

is interpreted such that every member of the class Cell has always some member of the class
CellMembrane as part.

The set of BioTop relations is considered exhaustive. It is strongly advised not to introduce
new relations into the set of predefined ones, because the arbitrary and uncontrolled use of re-
lations hinders the interoperability and comparability of different ontologies. BioTop relations
are characterized by:

• Their hierarchical structure. Relations can have one or more parent relations. E.g.,
hasAgent is a subrelation of hasParticipant.

• The inverse relation they are connected with. E.g. hasPart has the inverse relation
partOf.

• Their constraints. In most cases, their domain and their range are restricted by one or
more BioTop categories. E.g., abstractPartOf has both its domain and range restricted
by Information entity. Only information entities can be abstract parts or have abstract
parts.

• Their algebraic properties. Some relations are transitive, e.g. hasPart.

• Relation chains. E.g., A participatesIn B and B hasLocus C entails A hasLocus C.

In the remainder of this chapter we will discuss important top-level classes from BioTop
and detail how to use them when developing an ontology.

4.3.2. Material Object
Objective To represent everything which is material in the world and to relate it to other

physical entities in regard to location and partonomy.

Top-level classes MaterialObject, Atom, SubatomicParticle, PolymolecularCompositeEn-
tity, StructuredBiologicalEntity

Important relations The subrelations of spatiallyRelatedTo, in particular hasLocus, lo-
cusOf, physicallyConnectedTo

Description Material objects are continuants that have a mass. They can be atomic (Atom)
or subatomic (SubatomicParticle), or single molecules (MonoMolecularEntity) which
consist of at least two atoms which are bound to each other. All other material objects
consist of two or more molecules (PolymolecularCompositeEntity). Material objects are
related in terms of proper parts and wholes, by the transitive relations hasProperPhys-
icalPart and properPhysicalPartOf. Direct parts (components) that add up to a whole
are linked by the non-transitive relation hasComponentPart, a subrelation of hasProp-
erPhysicalPart. StructuredBiologicalEntity with its subclasses Cell, CellularCompon-
ent, Organism and OrganismPart is a subclass of PolymolecularCompositeEntity. An

38

Figure 4.6.: The top-level classes of the BioTop upper-domain ontology.

organism is composed (hasComponentPart) of organism parts, e.g. individuals of class
Organ. The parthood relation hasProperPhysicalPart is a subrelation of locusOf, the
general physical location relation. Therefore, a biological entity which is part of an
organism is also located in this organism (hasLocus). An organ part, e.g. a part of
a muscle wall of the organ, is not necessarily a component part of the organism (no
transitivity of the componentPartOf relation), but is necessarily proper physical part
of the organism (due to the subrelationship of componentPartOf on properPhysical-
PartOf and the transitivity of properPhysicalPartOf) and thus located in the organism
(hasLocus).

Example A water molecule has proper physical parts hydrogen atoms and oxygen atom:

WaterMolecule subClassOf
(hasProperPhysicalPart some HydrogenAtom) and
(hasProperPhysicalPart some OxygenAtom)

If we consider that the only things that could be parts of atoms are subatomic particles, we
can “close” this classes with a closure pattern (cf. 6.3.2) which leaves open the possibility for
subatomic parts with the transitive relation hasProperPhysicalPart and fully define Water-
Molecule.

WaterMolecule subClassOf MonomolecularEntity and

39

(hasProperPhysicalPart some HydrogenAtom) and
(hasProperPhysicalPart some OxygenAtom) and
(hasProperPhysicalPart only

(HydrogenAtom or OxygenAtom or SubatomicParticle))

4.3.3. Collective Material Entities and Compounds of Them
Objective To represent collections of material grains of the same sort or which is a hetero-

geneous compound of such collections.

Top-level classes CollectiveMaterialEntity, AmountOfPureSubstance, PluralityOfOrgan-
isms, CompoundOfCollectiveMaterialEntities

Important relations hasLocus/ locusOf, granularPartOf/ hasGranularPart

Description In chemistry and biology it is important to distinguish between molecules and
amounts of matter, or between single organisms and populations, respectively. Collect-
ive material entities (CollectiveMaterialEntity) are characterized as mereological sums
of multiple grains of the same sort (e.g. a heap of pure sand). Because it is dependent on
the knowledge of the observer, whether or not the grains are of the same sort, this class
does not establish a clear categorial distinction, that is every material object can be seen
as a collection of atoms or our heap of sand can be seen as a composition of different
types of sand, (see below). Where this distinction is needed, AmountOfPureSubstance
or PluralityOfOrganisms (subclasses of CollectiveMaterialEntity) can be used. The
grains are granular parts of the collection (granularPartOf/ hasGranularPart which
is also a non-transitive subrelation of properPhysicalPartOf/ hasPhysicalPart). E.g.
a water molecule is a granular part of a portion of water. Even higher aggregations of
collective material entities are compounds of collective material entities (CompoundOf-
CollectiveMaterialEntities) which have component parts of collective material entities.
As such they are compounds of collections with no clear identity and unity criterion
(e.g. an electrolyte solution on the basis of water which consists of a portion of wa-
ter, portions of different metal atoms in ionic form and portions of different atomic and
molecular anions like carbon dioxide or chloride).

Example A portion of water consists of water molecules as granular parts and portions of
sodium chloride molecules consist of sodium and chloride ions. Because of the intrans-
itivity of the relation hasGranularPart we can close the classes with a value restriction
(Closure Pattern, cf. 6.3.2):

PortionOfWater equivalentTo AmountOfPureSubstance and
(hasGranularPart some WaterMolecule) and
(hasGranularPart only WaterMolecule)

An aqueous sodium chloride solution is a heterogenous compound with three ingredients, viz.
water molecules, sodium and chloride ions. Again, due to the intransitivity of hasCompon-
entPart we can introduce a value restriction as closure and fully define the resp. class.

40

AqueousSodiumChlorideSolution equivalentTo

CompoundOfCollectiveMaterialEntities and
(hasComponentPart some PortionOfWater) and
(hasComponentPart some PortionOfSodiumIons) and
(hasComponentPart some PortionOfChlorideIons) and
(hasComponentPart only (PortionOfWater or PortionOfSodiumIons or

PortionOfChlorideIons))

4.3.4. Immaterial Object
Objective To represent what is physical but immaterial and to relate it to other physical

entities in regard to location and partonomy.

Top-level classes ImmaterialObject, OneDimensionalPhysicalEntity, TwoDimensionalPhy-
sicalEntity, ImmaterialThreeDimensionalPhysicalEntity, PhysicalBoundary, Wave

Important relations The subrelations of spatiallyRelatedTo, in particular: hasLocus/ lo-
cusOf, physicallyConnectedTo, hasProperPhysicalPart/ properPhysicalPartOf, phy-
sicallyBounds/ physicallyBoundedBy

Description Immaterial objects are continuants that have an n-dimensional spatial exten-
sion but, in contrast to material objects, no mass: lines (OneDimensionalPhysicalOb-
ject), planes (TwoDimensionalPhysicalObject), and three-dimensional spaces (Imma-
terialThreeDimensionalPhysicalObject). Immaterial objects can have physical parts
(hasProperPhysicalPart) which are immaterial objects of same or lower dimension
(e.g., a cubic space (hexaedric or rectangular box) has six bounding rectangular planes
as physical parts and one maximal cubus as a part). Material objects can have imma-
terial parts whereas immaterial objects cannot.3 A natural cave is an object which has
a wall usually of stone (MaterialObject) and a cavity (ImmaterialObject) as physical
parts. This is pertinent in determining something which is in an object but is not part of
this object (i.e. NOT physicalPartOf). A visitor of a cave is only located in the cave
but not a physical part of it. However, we can imagine complex (distributed and not
physically connected) material objects which have physical parts that are located in a
cavity or a hole inside the complete object and are physical parts of the object (imagine
for example a work of art with part of an object “flying in the center of a hole”, or an
physical experiment in a collider with electrons being accelerated insight the spatial ring
of the collider which are physical parts of the mechanical arrangement of the experiment
but not physically connected to the surrounding material ring).
Material objects are bounded by immaterial objects (physicallyBoundedBy) which are

3 The mereology here employed allows for material objects to have immaterial parts. For most of the biomedical
use cases and their respective users, this is the most natural and least complex representation of an inherently
very complex matter. The authors are aware of other mereological systems which might be much more
elaborate with respect to formal representation of topological relations of parts and wholes.

41

either planes, lines or points. A cell is bounded by the outer surface of the cell mem-
brane which is a surface. A bone can have a ridge or edge which is bounded by the line
on top of the edge and the two faces on either side of the edge by corresponding planes.

Example The surface of a portion of water is a two-dimensional immaterial object which
bounds a portion of water (and only of water):

SurfaceOfWater equivalentTo TwoDimensionalPhysicalObject and
(physicallyBounds some PortionOfWater) and
(physicallyBounds only PortionOfWater)

4.3.5. Structured Biological Entities
Objective To represent which is a physical part of an organism and to relate it to other

anatomical entities in regard to location, partonomy and further anatomical relations.

Top-level classes PolymolecularEntity, StructuredBiologicalEntity, Organism, Organism-
Part, Cell, CellularComponent

Important relations The subrelations of spatiallyRelatedTo, in particular: hasLocus/ lo-
cusOf, physicallyConnectedTo, physicallyBounds/ physicallyBounded

Description As outlined in the two sections above, structured biological entities are material
objects as well as immaterial objects and also compounds of both. On the macroscopic
level the organism (Organism) has organism parts (OrganismPart) which can be further
classified into organ systems, organs and organ parts, as well as tissues and cells. The
axiomatic description of biological entities is not trivial: we have to account for living
vs. dead biological entities, material derived from biological entities (e.g. wood), ca-
nonic vs. non-canonic entities (e.g. a mouse without a tail), in situ vs. in vitro entities
(e.g. blood samples) as well as different developmental stages (embryo, fetus, adult,...)
(Schulz & Hahn, 2007)

4.3.6. Process and Participation
Objective To represent occurrents and their participants as well as their mereological organ-

isation.

Top-level classes Process, Action

Important relations hasDuration, hasPointInTime, processuallyRelatedTo, hasParti-
cipant, hasAgent, hasPatient, hasOutcome, participatesIn, agentIn, patientIn, out-
comeOf, hasProcessualPart/ processualPartOf, precededBy/ precedes, hasLocus/
locusOf

Description Processes are extended in time and last a period of time (hasDuration), or oc-
cur at a point in time (hasPointInTime) as instantaneous processes. A Process is not

42

instantiated until it is fully completed. A specific transport process in which an atom or
a molecule is carried from one location to another (e.g. the intra-membranal transport
of a sodium-ion from inside the cell to the extracellular space) is not instantiated un-
til the specific transported substance has arrived at the target location and the transport
has been completed. When the specific transport process has been interrupted it did not
occur and was not instantiated. Processes have temporal parts (hasProcessualPart, pro-
cessualPartOf), which follow each other sequentially (precedes, precededBy). Only
for parts which are already completed an existential statement is meaningful (A pre-
cededBy some B) because about possible future process-parts one can only claim that
they are instances of a certain class (value restriction, A precedes only B) but not that
they will necessarily come into existence.
Processes have at least one participant (hasParticipant) which is a material object. A
process participant can bear (bearerOf) different roles (Role) depending on the pro-
cess it participates in. E.g., instances of class Human can be either Patient or Agent in
a Process dependent on their behaviour as acting or passively receiving. This can be
differentially represented by the subrelations of hasParticipant/ participatesIn, has-
Agent/ agentIn and hasPatient/ patientIn. Another role a participant can play is being
an outcome of a process like the product in a chemical reaction (hasOutcome). A Pro-
cess is an Action if an Agent participatesIn it.
Process participants have to be strictly discriminated from the location (hasLocus) of
the process. An inflammatory process of the fingernail has some fingernail as parti-
cipant. This is in the first place also the location of the process, but it does not imply
that an inflammation of the fingernail is an inflammation of the arm or the whole body.
Whereas location is transitive, participation is not. An inflammation located in the fin-
gernail is located in the hand (by transitivity of the hasLocus relation) but an inflam-
mation located somewhere in the hand is not necessarily the same as an inflammation
of the complete hand which would mean that the complete hand participatesIn the in-
flammation.
If a Plan, Disposition or Function is realized (hasRealization) then only by an instance
of the class Process (see below). If a Role is realized (hasRealization) then only by an
instance of class Participant (of an instance of class Process).

Example Medical procedures are therapeutic and diagnostic actions which have a medical
professional as agent and a medical patient as patient. Medical professional and medical
patient is a non exhaustive, non disjoint participation of humans based on roles (see
below):

TherapeuticalMedialProcedure subClassOf Action and

(hasAgent some MedicalProfessional) and
(hasPatient some MedicalPatient)

An intramuscular injection into the deltoid muscle is a therapeutic action which results in
the placement of a portion of a drug preparation for intramuscular injection into the deltoid
muscle of the patient both of which are modeled here as participants. Although DL is not

43

sufficient to formally express identity, we can express at least that the outcome of the action is
the placement (location) of a portion of the respective drug in a deltoid muscle.

DeltoidMuscleIntramuscularInjectionProcedure equivalentTo
TherapeuticalMedicalProcedure and
(hasParticipant some DeltoidMuscle) and
(hasParticipant some IntramuscularDrug) and
(hasOutcome some (IntramuscularDrug and

(hasLocus some DeltoidMuscle)))

4.3.7. Qualities and Their Values
Objective To represent attributes of objects and their values.

Top-level classes Quality, ValueRegion, QbjectQuality, ProcessQuality

Important relations inheresIn, bearerOf, hasQuality/ qualityOf, hasObjectQuality/ ob-
jectQualityOf, hasProcessQuality/ processQualityQf, qualityLocated/ qualityLoca-
tionOf

Description Most things have attributes like size, colour, shape, duration or length which
are called Quality and are dependent on the objects that bear them. The objects are
bearerOf (hasQuality) the respective quality and the quality inheresIn (qualityOf)
its bearer. The quality can have values which are either quantitative or qualitative. In
OWL numerical (quantitative) values are best assigned with data type properties to the
individuals as numbers whereas qualitative values are located (qualityLocated) in a
BioTop ValueRegion. Qualities and their value regions can be used to re-classify the
taxonomy according to qualitative criteria.

Example A substance which can be applied in a therapeutic context can have different thera-
peutic effects, e.g. anaesthetic, antibiotic etc. This type of therapeutic effect attribute
can be represented as a therapeutic effect quality (TherapeuticEffectQuality) which is
quality located in the respective therapeutic effect value region (TherapeuticEffectValu-
eRegion).

TherapeuticEffectQuality equivalentTo Quality and
(qualityLocated some TherapeuticEffectValueRegion) and
(qualityLocated only TherapeuticEffectValueRegion)

Different pharmacologically active substances can be classified according to the location of
the effect quality or qualities they bear:

PortionOfPharmacoActiveSubstance subClassOf AmountOfPureSubstance and
(bearerOf some TherapeuticEffectQuality) and
(hasGranularPart some (MonomelucularEntity or Atom))

PortionOfPenicillinG subClassOf PortionOfBetaLactam and

44

(bearerOf some
(qualityLocated some AntibioticTherapeuticEffectValueRegion))

and (hasGranularPart some PenicillinGMolecule)

PortionOfAcetylSalicilate subClassOf PortionOfPharmacoActiveSubstance and
(bearerOf some

(qualityLocated some AnestheticTherapeuticEffectValueRegion))
and (bearerOf some

(qualityLocated some AntiphlogisticTherapeuticEffectValueRegion))
and (bearerOf some

(qualityLocated some AnticoagulantTherapeuticEffectValueRegion))
and (hasGranularPart some AcetylSalicilateMolecule)

4.3.7.1. Taxonomic Differentiation of Organisms

Objective To represent the hierarchy of taxa in the biological realm by location of a quality
to respective values

Top-level classes Quality, ValueRegion, QbjectQuality, TaxonQuality, TaxonValueRegion

Important relations inheresIn, bearerOf, hasQuality/ qualityOf, hasObjectQuality/ ob-
jectQualityOf, hasProcessQuality/ processQualityOf, qualityLocated

Description Organisms are taxonomically ordered in a complex hierarchy of taxa which
are represented by the location of the taxon quality (TaxonQuality) in a correspond-
ing disjoint partition of hierarchically ordered taxon value regions (TaxonValueRegion).
Hence, a taxonomical position of an organism can be assigned by the location of its
taxon quality in the corresponding taxon value region. The logical soundness of this
assignment can be proven and the super-/ subclass relations of an organism with regard
to the taxonomic relations can be queried (Schulz et al., 2008).

Example An animal is an organism with a taxon quality which is quality located in the King-
domAnimaliaValueRegion. A vertebrate is an animal whose TaxonQuality is located in
the SubphylumVertebrataValueRegion.

4.3.7.2. Differentiation between Canonical and Pathological

Objective To represent canonical and pathological objects and processes by location of a
quality to respective values.

Top-level classes Quality, ValueRegion, QbjectQuality, ProcessQuality

Important relations inheres in, bearer of, has quality/ quality of, has object quality/
object quality of, has process quality/ process quality of

Description Anatomical structures as well as bodily states and processes can be either ca-
nonical or pathological. Canonical is defined as being in a state or condition in a normal

45

’range’ of function, structure or behaviour whereas pathological is outside of this range.
Only in few cases is the assignment of one of these two conditions based solely on
quantitative and objective data but in most cases it is an attribution by a health profes-
sional who states this. Thus, it is best represented as a quality Canonicity which can
be located in a value region which has exactly two values CanonicalValueRegion and
NonCanonicalValueRegion. The latter can be subtyped by need, e.g. with Pathological-
ValueRegion.

4.3.8. Information Object
Objective To represent information.

Top-level classes InformationObject, Plan

Important relations denotes/ denotedBy, hasRealization/ realizationOf

Description Information is essential in life and not neccessarily of human origin. An in-
stance of InformationObject is dependent on a physical carrier (bearerOf/ inheresIn),
but independent of a carrier with regard to its encoded content. Information does “mean
something” which is represented by the relation denotes/ denotedBy. The particular
which is denoted by the information (e.g. some protein structure) is existentially de-
pendent on the denoting individual (in this example the encoding gene). The other way
round, the denoting information is only existentially dependent on its carrier but does
not need to be decoded: “HemoglobinProteinSequence subClassOf (denotedBy some

HemoglobinGene)” but “HemoglobinGene subClassOf (denotes only Hemoglobin-
ProteinSequence)”.
Plan is a subclass of InformationObject which defines a series of steps that must be ful-
filled. A plan can only be realized (hasRealization/ realizationOf) by a Process. With
respect to a possible realization plans resemble dispositions and roles (see below).

Example A treatment plan is an information object which usually inheres in some paper
(on which it is written) or some electronic device in which it is stored. It describes the
actions and their sequence which will are planned to be undertaken to succesfully com-
plete the respective medical procedure. The plan exists independently of the planned
procedure. The planned procedure is existentially dependent on the plan (although a
unplanned action can be identical in the sequence of procedural steps without being a
realization of the plan).

4.3.9. Roles and Dispositions
Objective To represent the realizable entities disposition and role.

Top-level classes Disposition, Role

Important relations bearerOf/ inheresIn, hasRealization/ realizationOf

46

ha
sL
oc
us

so
m

e

Pathological
Structure

Anatomical
Entity

Pathological
Disposition

Pathological
Process

in
he
re
sI
n

so
m

e

be
ar

er
O

f s
om

e
hasRealization only

realizationOf some

hasParticipant some

participantOf some

hasLocus some

Figure 4.7.: Disease model (Scheuermann et al., 2009; Schulz et al., 2011)

Description Roles and disposition resemble qualities insofar they are also dependent enitit-
ies. They inhere in things (bearerOf/ inheresIn) which can realize them in processes
(hasRealization/ realizationOf). A disposition inheres in some thing and can bring
itself to existence in a respective process, e.g. the human disposition to speak is eventu-
ally brought to existence in most humans in the action of speaking. On the other hand,
a role inheres in some thing and can be brought to existence by a certain type of process
participation of the thing in which the role inheres, e.g. a human can have the role of
a medical professional and a medical patient according to her participation in a med-
ical procedure. Another example is the participation of substances in chemical reaction
processes in which they can participate in very different roles, e.g. an enzymatic protein
participates in its synthesis in the role of a translated outcome protein and in the reaction
which it catalyzes as an enzyme. A thing can be bearer of multiple roles and disposi-
tions hence a partition based on disposition or role cannot be disjoint. The realization of
a disposition or role in an object is not necessary so that it can only be represented with
a value restriction (hasRealization only Process) Röhl & Jansen (2011).

Example “Diseases” can be represented as a triple of PathologicalStructure, Pathological
Disposition and PathologicalProcess (SDP triple) (Scheuermann et al., 2009; Schulz
et al., 2011).

PathologicalStructure subClassOf MaterialObject and
(hasLocus some AnatomicalEntity)

PathologicalDisposition subClassOf Disposition and

(inheresIn some PathologicalStructure) and
(hasRealization only PathologicalProcess)

PathologicalProcess subClassOf Process and
(hasParticipant some PathologicalStructure)
(hasLocus some AnatomicalEntity)

47

To represent a specific disease like a heart valve disorder (mitral insufficiency due to mitral
valve damage) and its consequences this ontological pattern is specialized according to the
participating entities. In a successive patho-physiological chain, resulting damages can be
represented as outcome of the pathological process of the respective patho-physiological stage.

MitralValveDamage subClassOf PathologicalStructure and
(hasLocus some MitralValve)

RetrogradeMitralBloodFlowDisposition subClassOf PathologicalDisposition and
(inheresIn some MitralValveDamage) and
(hasRealization only RetrogradeMitralBloodFlow)

RetrogradeMitralBloodFlow subClassOf PathologicalProcess and
(hasParticipant some MitralValveDamage) and
(hasLocus some MitralValva)

DilatingRetrogradeMitralBloodFlow subClassOf RetrogradeMitralBloodFlow and

(hasOutcome some DilatedHeart)

48

5. Good Practice Ontology Design Principles

5.1. Class Selection Principles
Not every word or phrase that is used in scientific discourse corresponds to a type that is fit
for inclusion in an ontology. Modellers must exercise dilligence when deciding what classes
are actually represented in the reality of the domain to be covered by the ontology. In what
follows, we present suggestions on how to make an informed decision about the inclusion of
a class in an ontology.

5.1.1. Linguistic Pitfalls for Class Selection
Disagreement with Reality

The goal of ontology engineering is to represent common, repeatable features of reality in the
form of usable information artifacts. Consequently, the class expressions in an ontology are
supposed to correspond to classes of entities in reality that share intrinsic features. We can
refer to such classes through our linguistic expressions, but language cannot be taken at face
value because it allows us to address arbitrary entities with a seemingly monolithic expression.
Both “Mitochondrion” and “Thing that fits into a 1m×1m×1m box” can equally be used to
refer to multiple entities, but they are not on equal footing ontologically because in the first
case, instances share a great number of features, while in the later case they only share a
contingent property such as size. Modellers have thus to avoid the following:

1. Introducing multiple classes that in fact refer to the same type of entity in reality: In
the 19th century, for example, general paresis of the insane was considered to be a
specific psychiatric condition, unrelated to any other disease. But later on, research has
shown that it is just an advanced stage of a syphilis infection. Hence the predicates
“is a syphilis infection” and “is a general paresis”, which were thought to be unrelated,
actually have common ground in reality and only one class, SyphilisInfection (which
might have different stages) is needed.

2. Introducing only a single class that encompasses unrelated types. For example, the class
NileCrocodile for a long time seemed to correspond to a single species of crocodiles,
but has since been shown to comprise two unrelated species, C. niloticus and C. suchus
(Hekkala et al., 2011). These classes should be used instead.

3. Introducing classes that do not have corresponding entities in reality: Miasma, Unicorn.

49

Closed Predicates

Additionally, at least some predicates can be readily disqualified by looking at the criterion
of repeatability. Following David Armstrong (1980), we introduce the following terminology:
We call a predicate closed if its semantics dictate that it can only be applied to a finite number
of individuals. Examples include “The first person to receive a heart transplant” or “One
of the Three Stooges”. “Variola virus”, on the other hand, will not be classified as closed.
Even though there is only a limited number of variola virus particles in existence, there is
nothing about the term “variola virus” that dictates that their number is necessarily limited.
Such predicates which don’t carry this type of inherent limitation will be called open. One
can easily grasp that a closed predicate cannot be used to express general, repeatable features
of reality. It is hence not useful to include classes corresponding to closed predicates in an
ontology.

We thus derive the following rule for ontology development: If the applicability of a pre-
dicate P is restricted to a finite number of individuals by some inherent limitation, no class
corresponding to P will be introduced to the ontology. Consequentially, modellers should
never use the curly bracesn of set theory (“}”, “{”) to define classes using individual lists.

Impure Predicates

A second axis of classification for predicates is that of pure and impure predicates. We call
a predicate impure if its definition makes essential reference to an individual entity (and pure
otherwise). “Person infected by patient #431” would be an example of an impure predicate.
Such predicates can be open predicates and hence be applied to a potentially infinite number
of individuals. But since they make reference to some contingent fact, they convey little
information about the features that individuals instantiating the corresponding class would
have. It is thus not desirable to include them in an ontology. Sometimes predicates only
make superficial reference to individuals, for example, one could have defined the Creutzfeldt-
Jakob disease as “The disease first described by Creutzfeldt and Jakob in 1920.” This use of
individuals can be eradicated by replacing the reference to the origin of the description with
the actual features of the disease described.

We thus derive the following rule for ontology development: If the definition of a predicate
P contains essential reference to one or more individuals, no class corresponding to P will
be introduced to the ontology. Consequentially, modellers will not use individuals in class
definitions.

5.1.2. Further Class Selection Rules
No Metaclasses

Ontologies strive to describe one level of reality, hence all classes in the ontology should
describe the underlying reality and not the vocabulary or classification criteria we apply to

50

them.1 Hence classes like MassTerm or EntityAlsoContainedInMeSH will not be present in
the ontology. One notable exception that is required to facilitate ontology maintenance is
the inclusion of the class Deprecated, which subsumes all classes that were present in earlier
versions of the ontology and need to be retained for backwards-compatibility.

No Ambiguous Classes

In scientific discourse, terms are often used ambiguously. The word “cancer”, for example,
can not only denote the ulcerous tissue in a patient (like in the sentence “He had his cancer
removed”) but also to refer to the disease process a patient is undergoing (like in the sentence
“He is in the early stages of cancer”). If such ambiguities exist, disambiguating classes need
to be introduced. Hence, modellers should not choose to include the class Cancer but rather
CancerousTissue and CancerProcess.

No “Catch-all” Classes

Conventional medical nomenclatures, such as ICD-10, often include “catch-all” classes such
as FractureOfLegNotOtherwiseSpecified to cover all cases that are not explicitly mentioned
in the classification. Whenever possible, such classes should be avoided when designing on-
tologies because they do not convey additional information about the individuals instantiated
by those classes. This requirement is, however, sometimes at odds with the requirement of
exhaustivity, which will be discussed in section 5.4.1 on page 55.

No Epistemic Content

Since the goal of an ontology is to describe the underlying reality, epistemic notions should not
be used to define new classes. Something is regarded as epistemic if it refers to our knowledge
about the world rather than just the world itself. Hence classes like ProbableCancer have no
place in an ontology. This also pertains to classes that give information about how a certain
fact has been discovered, like BacterialInfectionIdentifiedBySputumCulture. Such classes are
not admissible as well.

5.2. Specifying Class Metadata

5.2.1. What Is Metadata?
Metadata is data about other data that provides contextual information to increase the value
of the data being annotated with it. For annotation of ontologies one needs to distinguish
metadata that refers to the representational artefact (RA) as a whole (RA metadata) and
metadata that refers to the representational units (RU) within a given representational arte-
fact (RU metadata). On the RU level it is sometimes hard to decide what is metadata and what

1It is of course possible to create an ontology of classification systems or vocabularies. Such an ontology would
declare the corresponding linguistic or conceptual domain to be the level of reality that it wants to describe.
As long as this point is clear, no confusion can occur.

51

is data, since this depends on the granularity and richness of the given implementation/syntax.
For example in the OBO Syntax the ‘definition’ metadata tag is implemented (hardcoded) as
an RU within the OBO language, hence ‘definition’ is not regarded as metadata in OBO, but
as an essential representational unit within the OBO Format. For the OWL syntax on the other
hand there is no such RU and hence in this syntax this element would need to be formalized
as and referred to as metadata. In most cases however metadata annotations have no formally
defined semantics and are ignored by the automated reasoning programs.

Metadata elements can be drawn from standard providers or they can be implemented as
proprietary owl:AnnotationProperties right in an ontology. OWL annotation properties can
have either data values/literals (e.g. String or URI or rdf:XMLliterals (can embed arbitrary
XML) or individuals as objects (e.g. the instance ’metadata incomplete’ for the OBI:curation_-
status property). Structured data within metadata annotation properties is usually defined in
Backus Naur format.

5.2.2. Why Does One Need Metadata?
Enforcing a required set of minimal metadata to be delivered with an ontology will speed up
human orientation and enrich searches within these resources. Metadata elements will serve as
search attributes in query languages and will save the editors from performing more complex
filter operations manually. Straightforward access to more granular contextual information
will ease ontology administration, e.g. by providing access to editorial and development-
history data. Curation status metadata will provide a means for semi-automatic evaluation and
per-release checkups of our ontology, e.g. we can choose to release only terms with a curation
status above a certain level. Ultimately the application of metadata will:

• Increase data accessibility: Metadata will increase the speed of data access by con-
trolling and unifying the way data is accsessed, and specifying how and to whom what
parts of the resource are available.

• Increase data quality: Facilitated access synergetically increases the data quality as it is
continuously and frequently used and hence revised.

• Increase data standardisation: Rigorous usage of a metadata standard within an onto-
logy will ensure compatibility among different data sources and different branches of
the same representational artefact (RA).

• Increase tools/application capabilities: Data-consuming applications that utilise metadata
will be able to interact more cleanly with each other. The quality of tools is increased
by the deeper, machine-readable understanding of the underlying domain provided by
the metadata.

• Ease Ontology mapping and alignment: Metadata capture will ease ontology compar-
ison, evaluation and integration, e.g. through tools like PROMPT and for Ontology
access portals like the NCBO BioPortal.

52

Metadata and ODPs

Metadata policies can be outlined as part of Presentation Ontology Design Principles (PODPs),
specifically they are informed through the Annotation ODP2, which provides annotation prop-
erties or annotation property schemas that are meant to improve the understandability of onto-
logies and their elements. Examples are the use of RDF Schema labels and comments which
is crucial for manual selection and evaluation. In order not to re-invent the wheel and to keep
development cost down, existing metadata schemes should be re-used. We here introduce
some of the major existing metadata schema providers:

• RDFS / OWL: The RDFS and OWL languages themselves provide a few auditing and
editorial metadata elements for RAs and representational units (RU), e.g. owl:version-
Info, owl:equivalentClass, rdfs:label, rdfs:comment, owl:DeprecatedClass. While the
advantage of RDFS/OWL is their popularity in ontological communities, they are not
sufficiently complete to be applied as the sole set of metadata elements for OBI. This, to-
gether with their lack of granularity, has led ontology groups to overload these elements,
e.g., the rdfs:comment with editorial information as well as class definitions.

• Protégé metadata ontology: The Protégé metadata ontology (OWL-DL) provides some
administrative metadata tags, e.g. Protégé:isCommentedOut to make the reasoner ig-
nore some restrictions, and Protégé:todoPrefix to determine whether a property value is
a "to do" item. The advantage of these is that they are well integrated with the Protégé
editor environment and its reasoning facilities.

• Dublin Core (DC):3 This well accepted standard provides RA and RU metadata de-
scriptors for OWL-Full as well as OWL-DL. An OWL-DL version of the Dublin Core
ontology is suggested to be using DC annotation properties to annotate our RA with
context information such as ‘creator’, ‘date’, ‘language’, ‘publisher’, ‘title’ etc.

• The OBI metadata scheme and potential OBO Foundry recommendation: OBI has de-
cided to formulate its own RU metadata scheme. 4 To overcome the limitations of the
existing metadata schemes in terms of applicability to ontological RUs, OBI annotates
its RUs (classes and relations) with a custom-built set of RU metadata elements. The
reason was that not one of the existing schemes provided all the elements OBI needs.
RA minimal metadata used in OBI Metadata that describes representational artefacts
(RA) as a whole and that enables agents to determine whether a particular RA is suit-
able for their needs are called RA metadata. Valuable metadata elements are currently
dispersed over different metadata standard bodies and no single standard provides in-
tegrated access to all metadata elements desired by OBI. This has led OBI to draw its
RA metadata from four different metadata providers: Dublin Core, RDFS, OWL and
Protege. The disadvantage of this ’mixing approach’ is the following: Because the
standards available are not orthogonal, users importing more than one metadata scheme

2http://ontologydesignpatterns.org/wiki/Category:AnnotationOP, 21.09.2012.
3http://dublincore.org/, 21.09.2012.
4Cf. http://www.bioontology.org/wiki/index.php/Ontology_Metadata_Policy_%28from_OBI%29, 21.09.2012.

53

are left in constant doubt as to where to draw a certain metadata element from. RU
minimal metadata used in OBI currently applies a set of self developed RU metadata
elements. Compared to the Dublin Core, this metadata scheme has been shaped for a
more ontology-centric coverage and is tailored to the group’s needs.

5.2.3. Don’t Get Stuck in the ’Meta-Ether’
Providing Metadata can easily get too expensive and time-consuming. The art is to avoid
‘analysis-paralysis’ and getting stuck in the ‘Meta Ether’ (since knowledge is fractal there is
no limit to the level of detail/granularity a class and its metadata can be modelled). Metadata
should not get too complicated to be used. For best compliance the metadata implementation
should be applicable to a wide range of possible users and tools. Featuritis and scope creep
have to be avoided when we want our scheme to be of general usability.

5.3. Naming Conventions
Efforts to create explicit typographic, syntactic and semantic concept labelling conventions
have been carried out in isolation by most terminology developers. However, where nam-
ing conventions have been developed, widespread application has been hampered by several
factors, most notably domain specificity, document inaccessibility and format dependency.
To overcome this drawback, the OBO Foundry naming conventions effort has reviewed and
compared existing naming conventions, distilled and published universally valid conventions
applicable to the OBO and OWL formats. The development of their current set of consensus-
based, reusable naming conventions was also informed by a survey carried out on sixty onto-
logy developers. This is the categorisation of naming conventions as currently applied within
the OBO Foundry set:

1. Be clear and unambiguous
1.1 Use explicit and concise names
1.2 Use context independent names
1.3 Avoid confusing and overloaded taboo words
1.4 Avoid encoding administrative metadata in names
2. Be univocous
2.1 Use univocous names and avoid homonyms
2.2 Avoid conjunctions
2.3 Prefer singular nominal form
2.4 Use positive names, i.e. avoid negations
2.5 Avoid catch-all terms
3. Reduce string variance
3.1 Recycle strings
3.2 Use genus-differentia style names
3.3 Use space as word separators
3.4 Expand abbreviations and acronyms

54

3.5 Expand special symbols to words
4. Align Typography
4.1 Prefer lower case beginnings
4.2 Avoid character formatting

For the full set including definitions and examples please refer to the OBO Foundry pages.5Note
that, contrary to conventions 3.3 and 4.1 above, we use in this guideline uppercase beginnings
for class names (to distinguish from the names for object properties) and the CamelBack type
instead of space for word seperation, both in accordance with BioTop and Protégé.

5.4. Designing Taxonomies
Ontologies are not merely collections of unrelated classes. They also specify the relationships
between those classes in a hierarchical structure, which is called a taxonomy. Ontological
taxonomies identify the subsumption relationships between the classes in the ontology just as
biological taxonomies identify the hereditary relationships between species, genera, ordines,
etc. In an ontology, the subsumption links are specified by means of the so called ’is_a’
relation which corresponds to the “subClassOf” construct. We remind ourselves again of the
formal interpretation of this operator (cf. section 3.3.1 on page 19): class A subsumes class B
(“(B subClassOf A)”) if all individuals of class B are at the same time individuals of class A.

Often failure to comprehend the semantics of the subsumption relation leads to mistakes
in ontology design. The following sections discuss possible problems that can arise when
designing taxonomies and give directions on how to avoid them.

5.4.1. General Design Recommendations
The quality of a taxonomy can be vastly improved by taking into account a few general criteria
(cf. (Jansen, 2008b). Two of them form the backbone for an adequate taxonomic classification:

Exhaustivity When adding classes to the ontology, new subclasses ideally exhaust their
superclass. This means that every individual that falls under the superclass A also falls
under one of its subclasses B1,B2,. . . Bn. The reason for this is that only the leaf-classes
of a taxonomy do exist in a strong sense: There does not, for example, exist an individual
that instantiates merely the class LacticAcid but neither L-LacticAcid nor D-LacticAcid
since any existing molecule of lactic acid must be one of the isomeres.
Formally, the required constraint can be introduced by, for example, defining the class
LacticAcid as (CarboxylicAcid and (L-LacticAcid or D-LacticAcid)).6 The general
principle here is that the superclass of the class in question is restricted by using the
“and”-operator on the union of the subclasses.7

5http://obofoundry.org/wiki/index.php/Naming, 21.09.2012.
6Assuming that CarboxylicAcid is the direct superclass (genus proximum) of LacticAcid.
7Tip for users of the Protégé ontology editor: This constraint can be added to the “Equivalent classes” section

under “Description” of the “Classes” tab.

55

Disjointness When adding classes to the ontology, new subclasses ideally do not overlap.
This means that every individual that falls under the superclass A also falls under at most
one of the subclasses B1,B2,. . . Bn. For example, no individual instantiating LacticAcid
can instantiate both L-LacticAcid and D-LacticAcid, just as no individual instantiating
Eukaryote can at the same time instantiate both Plant and Animal.8

If these two principles are adhered to, the resulting classification (superclass A and its sub-
classes B1,B2,. . . Bn) is said to be jointly exhaustive and pairwise disjoint (JEPD). This kind
of classification ensures that every individual in the domain of interest falls under exactly one
class. Ontology developers that are unsure about the concrete semantics of the OWL con-
structs needed to implement these suggestions should review chapter 3.

Additionally the following principles should also be adhered to when creating useful tax-
onomies.

Structuredness Good taxonomies usually exhibit a great deal of structure: They contain
many levels of classes and subclasses, which increase the utility when compared with
flat lists of classes. We can look to zoological taxonomy for an example: If the class
Animal were to contain as its immediate subclasses classes like Tiger, Mollusc, Eurasi-
anSparrowhawk, and Reptile, it would be very difficult do gather any information from
this taxonomy because it not only lacks structure but also misrepresents the status of the
subclasses. Tiger and EurasianSparrowhawk are situated on the level of species, while
Mollusc is a class on the level of phyla and Reptile on the level of (biological) taxonomic
classes.
Organizing these classes in a proper hierarchy facilitates retrieving knowledge about
entities on many levels, be it species, genus, phylum, or regnum. Users should avoid
both introducing subclasses that exhibit different degrees of generality and skipping too
many levels when dividing the topic domain. The depth of the hierarchy can, however,
be limited by practical considerations.

Systematicity For every division of a superclass into multiple subclasses, coherent criteria
should be applied. For example, a possible classification of the class Molecule could
include (among others) the subclasses BioMolecule and SilicateMolecule. This classi-
fication is to be rejected because it uses incoherent principles to generate the subclasses:
While BioMolecule would need to be defined by provenance (a biomolecule is a mo-
lecule that can be produced by a living organism), SilicateMolecule would be defined
by chemical structure (a silicate molecule is a molecule that includes silicon bearing
anions, such as [SiO4]

4−). This incoherent way of classification can also lead to classes
which are not disjoint: At first sight, BioMolecule and SilicateMolecule might appear
to be disjoint, but further investigation or simply the broadening of the intended domain
might reveal cases of silicates that are generated by biological organisms. Instead, users
should divide classes in a principled way, e.g. taking into account only the chemical
structure.

8Tip for users of the Protégé ontology editor: This constraint can be achieved by adding the classes that a certain
class is disjoint with to the “Disjoint Classes” section under “Description” in the “Classes” tab.

56

5.4.2. Subsumption Misuse Problems
Modellers sometimes tend to use the subsumption hierarchy to represent relationships that
are not really subsumptions. This leads to false and often misleading interpretations of the
ontology, which are especially harmful if the ontology is used for automated reasoning. The
confusions are largely due to the way we use the verb “to be” in everyday discourse. The verb
“to be” is in fact used to express the subsumption relation, as in “An elephant is a mammal”,
which is the non-technical translation of a subClassOf assertion. But “to be” is also com-
monly used to express other information, for example instantiation, as in “Fido is a dog”, or
attribution as in “Grass is green”. Usually, these cases of subsumption-misuse can be disam-
biguated by introducing the correct relation:

• Subsumption instead of instantiation: While ’Human subClassOf Mammal’ is a correct
subsumption relation (every human is also a mammal, but not necessarily vice versa),
’Paul subClassOf Human’ is incorrect. Paul is not a subclass of Human (hence repeat-
ably instantiable by different individuals), but an individual that instantiates the class
Human. Otherwise it would be possible for different individuals to instantiate the class
Paul.9 Since ontologies are not supposed to contain individuals, this type of mistake
should, a forteriori, never occur.

• Subsumption instead of parthood: The ’is_a’ relation can also be confused with ’part_of’:
’M-Membrane subClassOf Mitochondrion’ is not correct, because every m-membrane
would at the same time be a mitochondrion. In fact, “(M-Membrane subClassOf phy-
sicalPartOf some Mitochondrion)” and not a subclass of it.

• Subsumption instead of attribution: Subsumption links like “Strawberry subClassOf

RedThing”, while being technically correct (at least every prototypical strawberry is
also a red things), should be excluded from good taxonomical hierarchies because being
red is nothing that unifies the classes it subsumes in a useful way. We would have to
include not only strawberries, but also porphyry, blood, and a certain kind of card used
by football referees as being subsumed by RedThing. It is more useful to describe the
relationship as that of an object having a quality instead: “(Strawberry subClassOf

bearerOf some RedColourQuality)”.

• Subsumption instead of composition: One might be tempted to include the subsumption
link “(River subClassOf Water)” in the taxonomy. This is clearly wrong because the
two classes are individuated and identified quite differently: Water is the divisible stuff
that can be portioned into glasses, buckets, or rivers. A portion of water remains the
same portion as long as it contains the same molecules. A river, on the other hand, is
a geographical formation that is composed of water, and as such, it exhibits a higher
degree of unity than water: It cannot be arbitrarily divided into several rivers, whereas
portions of water can be arbitrarily divided into further portions. Also, the bulk of water
that constitutes the river can change while the river can stay the same. Hence, modellers
should write “(River subClassOf hasComponentPart some Water)”

9Again, it is important not to confuse the name “Paul”, which can, albeit ambiguously, apply to multiple per-
sons, with the person Paul, who is a single human being.

57

5.4.3. OntoClean Taxonomy Design Principles
There is a number of additional criteria that could be applied to determine whether a sub-
sumption link in the taxonomy is well founded. Some of these are specified in the OntoClean
methodology (Guarino & Welty, 2009), which assigns “metaproperties” to classes in order
to determine whether they can subsume one another. For example, OntoClean suggests that
classes whose individuals differ in their unity criteria should not appear in a subClassOf

assertion. For example, PortionOfOxygen and OxygenMolecule impose quite different unity
criteria. Oxygen molecules are clearly delineated, countable entities while portions of oxygen
lack such criteria. For everyday usage, OntoClean metaproperties are usually too complex but
experienced modellers might find it valuable to consider them.

5.5. Relations for Rich Class Definitions
Usually rich ontological modelling involves more than just the creation of a taxonomy of
classes. It also needs to represent the complex relations of entities from different classes. This
is usually done by creating “equivalentTo” (full definitions) and “subClassOf” axioms that
assert that instances of the class always stand in a certain relationship to other entities. This
is done with complex class descriptions involving formal relations or, in OWL lingo, object
properties (cf. section 3.3.2 on page 23). We will illustrate some specific problems of such
definitions by taking the parthood relation as an example.

5.5.1. Example: Parthood Relations
One common type of relationship that is frequently used to express the spatial or temporal
structure of entities is the parthood relation. Variants of the ’partOf’ relation are used when
an instance of a class is a part of an instance of another class, e.g. the mitochondrion is a
part of the cytoplasm, the index finger is part of the hand. So we have the relation Mito-
chondrion subClassOf properPhysicalPartOf some Cytoplasm, Index Finger subClassOf
properPhysicalPartOf some Hand.

We can admit both spatial and temporal parts in our ontology. The partOf relation can also
be applied to occurrent entities, i.e. processes. Processes can have temporal parts, that are
partial processes or “phases”. The diverse phases of cell division (mitotic phase, interphase,
cytokinesis etc.) are all parts of the whole cell cycle process, hence CellCycle subClassOf

hasTemporalPart some Interphase. We will not discuss parts of processes further, but it is im-
portant that the part_of-relation between processes is not confused with the “hasParticipant”-
relation that holds between processes and the continuants that participate in these processes.
E.g. CellDivision subClassOf hasParticipant some Cell.

As continuants may change over time with respect to their parts (or other entities they are
related to in one way or another) one has to keep in mind that object property assertions
or restrictions in an OWL ontology imply permanent relatedness. If it is asserted that Wa-
terMolecule subClassOf hasProperPhysicalPart some OxygenAtom then water molecules
must always have oxygen atoms as parts. On the other hand, it would be incorrect to state that

58

Tree subClassOf hasProperPhysicalPart some Leaf. This is because some trees have their
leaves in summer and autumn, but not in winter.

5.5.2. Difficulties with Inverse Relations
When looking at axioms like “WaterMolecule subClassOf hasProperPhysicalPart some

OxygenAtom” we observe that it includes an implicit universal quantifier (“for all water mo-
lecules . . . ”) followed by an existential quantifier (“some oxygen atom”). This is called an
“all-some-structure”. All water molecules have some oxygen atom as parts, but it can not
be deduced that every oxygen atom must be part of some water molecule. Sometimes that
is indeed the case, but it does not simply follow from the logical properties of the relation.
Another example on the contrary is HumanTesticle subClassOf properPhysicalPartOf some
HumanBody. Every human testicle is part of some human body, but not every human body has
a testicle among its parts. In this respect hasProperPhysicalPart and properPhysicalPartOf
are inverses of one another. An inverse relation Rel−1 for the two-place relation R is defined
as the relation that obtains between the relata, if they are exchanged: A Rel B = B Rel−1A.
Since the “all-some-structure” does not automatically transfer to the inverse, modellers need
to carefully consider which of the two relations should be used.

59

6. Ontology Design Patterns (ODPs)

6.1. What Are Ontology Design Patterns (ODPs)?
Often, ontology developers encounter similar modelling problems in different situations. Be-
cause of this, Ontology Design Patterns (ODPs) have been developed in order to provide stan-
dardized and re-usable solutions for such recurring problems in ontology building (Suárez-
Figueroa & Gómez-Pérez, 2008). The use of ODPs should facilitate ontology design, ontol-
ogy maintenance and ontology integration. In this section we focus on the use of ODPs as
ontological resources in the development of ontologies.

The ODPs will be visualized by using images produced with the Unified Modeling Language
(UML), which is a graphical modelling language for specification, design and documentation
of systems.1 The ODPs presented in this guideline can be classified into three main groups
Aranguren (2005):

• Extension ODPs are ODPs that extend the limits of OWL 2. We will introduce the
Exception pattern and the N-ary Relations pattern.

• Good Practice ODPs are used to produce more modular, efficient and maintainable
ontologies. They address typical pitfalls of ontology engineering. We introduce the
Normalisation pattern, the Closure pattern and the Value Partition pattern.

• Content ODPs are ODPs that are used to model a well-defined segment of a domain.
They are therefore specific to this domain. We introduce the Process Sequence pattern
and the Spatial Disjointness pattern.

6.2. Extension ODPs

6.2.1. Exceptions
Description The distinction of the normal (canonical) from the exceptional (non-canonical)

is characteristic for biology and medicine. E.g., eukaryotic cells are commonly consid-
ered to be cells with a nucleus.2 At the same time some biologists consider mammalian
red blood cells as eukaryotic cells, although they lack a nucleus. If they are represented
as a subclass of eukaryotic cells a logical error occurs.3

1http://www.omg.org/spec/UML/2.3/Infrastructure/PDF/, last access on 11.10.2012.
2An accurate classification of red blood cells is still possible by including the presence of S80 ribosomes in the

definition.
3http://www.gong.manchester.ac.uk/odp/html/Exception.html, last access 09.07.2009.

60

Aim To model exceptions without breaking the strict class-subclass hierarchy and to get a
consistent classification.

Application scenarios The exception ODP can be applied to a broad range of domains.

Structure/ Implementation For any exception class A,

• create two subclasses of A, one representing the TypicalA and one representing the
AtypicalA

• add a covering axiom to A to state that instances of A are either typical or atypical,
so that A is the disjoint union of TypicalA and AtypicalA

• the conditions that make A typical are pushed down into TypicalA

• all other subclasses of A are left unchanged

A covering axiom is added to the main class EukaryoticCell to state that all instances must
belong to one or the other subclass TypicalEukaryoticCell or AtypicalEukaryoticCell. Hence,
EukaryoticCell will be equivalent to the disjoint union of TypicalEukaryoticCell and Atypi-
calEukaryoticCell. After reasoning the correct hierarchy will be inferred with the two new
subclasses ’Typical’ and ’Atypical’ at every level.

Warning The exception pattern may appear confusing because it requires auxiliary classes,
which clutter up the class hierarchy. The exception ODP can produce ontologies that
are too complex and difficult to manage.

Example A standard example for the Exception Pattern is the classification of cells:4

• All eukaryotic cells have one nucleus.

• Mammalian red blood cells are considered as eukaryotic cells, but they lack a nucleus.
Thus they are a subclass of eukaryotic cells without fulfilling the condition for belonging
to that class (having a nucleus).

• Avian red blood cells have a nucleus.

The important classes are the newly created classes: TypicalEukaryoticCell, TypicalRedBlood-
Cell, AtypicalEukaryoticCell and AtypicalRedBloodCell. These classes will be inserted in any
exception class (here EukaryoticCell and RedBloodCell). The rest of the classes in the hierar-
chy stays the same. This means that we make the following assertions:

AtypicalRedBloodCell equivalentTo
RedBloodCell and (hasPhysicalPart some CellNucleus)

RedBloodCell subClassOf EukaryoticCell

RedBloodCell subClassOf TypicalRedBloodCell or AtypicalRedBloodCell

4http://www.gong.manchester.ac.uk/odp/html/index.html, 09.07.2009

61

Figure 6.1.: Asserted Model: General view of typical and atypical subclasses before reasoning

Figure 6.2.: Inferred Model: General view of typical and atypical subclasses after reasoning

TypicalRedBloodCell subClassOf RedBloodCell

AvianRedBloodCell subClassOf hasPhysicalPart some CellNucleus

AvianRedBloodCell subClassOf RedBloodCell

MammalianRedBloodCell subClassOf hasPhysicalPart only
(not CellNucleus)

MammalianRedBloodCell subClassOf RedBloodCell

6.2.2. N-ary Relations
Description For precise descriptions, relations with two arguments (A,B) as introduced are

sometimes not sufficient. E.g., we want to relate two interacting molecules with the
place where they interact, such as expressed by the relation interacts (Substance, Sub-
stance, Place). OWL, however does not support relations with more than two argu-
ments.

Aim To find a way to express more than two-valued relations given the OWL restriction.

Application scenarios The N-ary Relations ODP shows how to alternatively represent a
relation with n arguments.

Structure/ Implementation The solution is called reification. This means, that the mean-
ing originally expressed as a relation is encoded in a class. Such classes are often
thought of as processes, e.g. the relation interacts is expressed as the class Interac-
tion under Process. Each original argument then corresponds to one class restriction
for which standard relations such as hasParticipant, hasAgent, hasLocus can be used,

62

Figure 6.3.: N-ary Relationships

which has the advantage that the meaning is more explicit than if hidden within a list of
arguments.

Example The above example interacts (Substance, Substance, Place), could then be mod-
elled as

SubstanceInteraction subClassOf Process and
(hasParticipant some Substance) and
(hasParticipant only Substance) and
(hasLocus some PhysicalEntity)and
(hasLocus only PhysicalEntity)

This relation, however, does not specify the number of substances. This could be corrected
by adding the restriction “hasParticipant exactly 2”.

Note that we use a closure (cf. 6.3.2 on page 66), i.e. we require the existence of each
argument and we constrain its value to a certain type.

Warning Reification introduces numerous problems into the ontology. For example, none
of the usual OWL constructs for object properties/relations can be applied (i.e. it is
not possible to specify transitivity/reflexivity etc. over reified relations). Additionally,
uniqueness of the tuples that instantiate the relations can no longer be enforced, so that
multiple distinct instances of the reified class connecting the same relata can be created.

6.3. Good Practice ODPs

6.3.1. Normalisation
Description The taxonomic backbone of ontologies is either monohierarchical or polyhier-

archical. In monohierarchical (Figure 6.4) or strict hierarchies, every class can have

63

only one (immediate) superclass (“parent”), whereas polyhierarchies allow for multiple
parents. Polyhierarchies are more difficult to create and to maintain due to their increas-
ing structural complexity. Normalisation is an ontology building technique that relies
on using an automated reasoner to maintain the polyhierarchy. The asserted taxonomy
is therefore monohierarchical; all additional taxonomic links will be inferred by auto-
matic reasoning from the class definitions. Hence there is no need to manually assert
a polyhierarchy, as it can be inferred from an asserted monohierarchy. However, this
requires fully defined classes 5.

Aim To produce polyhierarchies by maintaining only monohierarchies.

Application scenarios The ’Normalisation’ ODP can be used in a multiple inheritance
ontology to build an ontology with an efficient polyhierarchy structure.

Structure/ Implementation The following steps are to be followed Aranguren (2005)67:

1. Group all the classes you need in a tree form (strict hierachy)

2. Create primitive classes (only necessary conditions), that means classes with only one
parent. (They are marked yellow in the example class hierarchy.)

3. Primitive siblings must be disjoint.

4. Redefine the classes and newly added classes according to the conditions for belonging
to each class, that means define:

• primitive classes (classes with necessary conditions) marked yellow and

• defined classes (classes with necessary & sufficient conditions) marked orange

After reasoning you get a polyhierarchical structure (Directed Acyclic Graph, DAG).

Example According to the example from 8, the class ’Cell’ is a superclass of: ’Circulating-
Cell’, ’DefensiveCell’, ’AnimalCell’, ’PlantCell’, and ’StuffAccumulatingCell’. ’Ani-
malCell’ has the following subclasses: ’Neutrophil’ and ’SyncytialGiantCell’. ’Plant-
Cell’ has the subclass ’MyrosinCell’. The normalisation ontology has two parts:

1. The first part consists of primitive classes (in the figure yellow ovals), which have one
superclass and are pair-wise disjoint.

2. The second part consists of defined classes (in the figure orange ovals), which have no
superclasses, apart from owl:Thing (i.e. the root class) and are not disjoint.

After reasoning all entailed subsumptions are inferred, so that we get the following polyhier-
archy structure .

The underlying axioms in Manchester notation:
5http://ontogenesis.knowledgeblog.org/49, 11.10.2012.
6http://ontogenesis.knowledgeblog.org/49, 11.10.2012
7http://www.gong.manchester.ac.uk/odp/html/index.html, 09.07.2009
8http://www.gong.manchester.ac.uk/odp/html/index.html, 09.07.2009.

64

Figure 6.4.: Normalisation ODP in a strict hierachy: Asserted before reasoning

Figure 6.5.: Normalisation ODP in a Directed Acyclic Graph: Inferred after reasoning

65

Neutrophil subclassOf bearerOf some CirculationFunction

Neutrophil subclassOf bearerOf some DefenseFunction

MyrosinCell subclassOf bearerOf some StuffAccumulationFunction

DefensiveCell equivalentTo (Cell and bearerOf some DefenseFunction)

StuffAccumulation equivalentTo

(Cell and bearerOf some StuffAccumulationFunction)

6.3.2. Closure
Description The rationale of the Closure Pattern9 is the open world assumption of OWL

2. This means that an existential restriction is not sufficient to ’close’ a relationship.
An additional value restriction is needed. For example, a carnivore eats meat and an
herbivore eats vegetables and an omnivore eats food of both kinds. But if we only assert
this, we do not exclude that a carnivore does also eat vegetables and that an herbivore
does also eat meat. Thus we do have to assert explicitly that a carnivore eats meat and
only meat, and that a herbivore eats vegetables and only vegetables. Without these value
restrictions, Carnivore and Herbivore would appear as subclasses of Omnivore, whereas
they are in fact disjoint classes.

Aim To express that something stands in a certain relation to some class and only that class.

Application scenarios The Closure Pattern is used to definine necessary and sufficient
conditions on the same object property.

Structure/ Implementation Assert a statement with existential restriction and value re-
striction according to the following schema (“relatedTo” being a placeholder for an
arbitrary object property):

A subClassOf (relatedTo some B) and (relatedTo only B)

Figure 6.6.: Closure Ontology Design Pattern

Example The definition of the class BacteriaPopulation in BioTop usess the Closure Pattern:

9http://www.gong.manchester.ac.uk/odp/html/index.html, 09.07.2009.

66

BacteriaPopulation equivalentTo Population and

(hasGranularPart some BacterialCell) and
(hasGranularPart only BacterialCell)

This means that every instance of the class BacteriaPopulation has some instance of the class
BacterialCell as its granular part, and that it has only instances of the class BacterialCell’ as
granular parts.

Warning Many new users confuse the use of “some” and “only”. Be aware that value restric-
tions are sometimes also called “universal restrictions”. Additionally, the characteristics
of the object property over which closure is performed need to be taken into account.
Especially closure over transitive properties can have unexpected results. For example,
the closure statement “(hasProperPhysicalPart only OxygenAtom)” cannot be used in
a definition of OxygenMolecule because it would forbid oxygen molecules from hav-
ing neutrons, electrons or protons as parts, whereas oxygen atoms would be defined as
having those parts, thus deriving a contradiction. The proper statement would thus be
“(hasProperPhysicalPart only (OxygenAtom or SubAtomicParticle))”.

6.3.3. Value Partitions
Description The Value Partition Pattern consists of a covering axiom and disjoint axioms

which allow a precise description of the values a parameter may take. The features are
constrained by having certain values. For example, a person can be short, medium or
tall, but a person cannot have all these values of height at the same time. Similarly, the
juridical gender of a person can only be male or female. The Value Partition ODP is
used to model the fact that a parameter can only take certain values (Aranguren, 2009;
Aranguren et al., 2008).10

Aim To model disjoint values of attributes.

Application scenarios The Value Partition Pattern can be used, if we have features that
are constrained to have certain disjoint values.

Structure/ Implementation The Value Partition Pattern consists of a parameter class (e.g.
TaxonValueRegion) and values of the parameter as subclasses of the parameter class
(e.g. KingdomFungiValueRegion, KingdomArchaeaValueRegion, KingdomBacteriaVal-
ueRegion, ...). The following steps must be followed:

1. For each attribute create a class. In each attribute class create a subclass for every
value and make them disjoint.

2. The attribute class will be fully defined by a covering axiom for the attribute, i.e.
it will be defined to be equivalent to the union of classes value(1), value(2),...,
value(n). This ensures that whenever a new class is added, it is added as a subclass
of the values.

10Cf. also http://www.gong.manchester.ac.uk/odp/html/index.html, 09.07.2009.

67

Figure 6.7.: The class ’TaxonValueRegion’

Example The TaxonValueRegion from BioTop is a paradigmatic example of a value parti-
tion. The ’TaxonValueRegion’ has ’ValueRegion’ as superclass and the following sub-
classes: ’KingdomAnimaliaValueRegion’, ’KingdomFungiValueRegion’, ’KingdomAr-
chaeaValueRegion’, ’KingdomBacteriaValueRegion’. These subclasses or value classes
are pairwise disjoint. The covering axiom is the following:

TaxonValueRegion equivalentTo

KingdomAnimaliaValueRegion or

KingdomFungiValueRegion or

KingdomArchaeaValueRegion or

KingdomBacteriaValueRegion

The attribute class is equivalent to the union of the value classes. Therefore if a new sub-
class is added to the attribute class, the reasoner will flag the attribute class to be inconsistent
Aranguren (2009).

6.4. Content ODPs

6.4.1. Spatial disjointness
Description In BioTop, localization is expressed by the relation ’locusOf’ and its inverse

’hasLocus’, which are transitive and relate a place with an entity which occurs, inheres,
or is part of it.

68

Aim To specify that objects of the type A never overlap topologically with objects of type B.

Application scenarios It can be used in any ontology that describes the spatial composi-
tion of objects and places.

Structure/ Implementation For each class pair (A, B) we add similar restrictions in the
following way:

A subClassOf locusOf only (not hasLocus some B)

B subClassOf locusOf only (not hasLocus some A)

Example It is recommended to carefully identify structural dissection levels in order to
achieve completeness and parsinomy. For instance, if the following axioms obtain:

Lung subClassOf partOf some Thorax

Stomach subClassOf partOf some Abdomen

partOf subPropertyOf hasLocus

and if Thorax is “spatially disjoint” from Abdomen, expressed as

Abdomen subClassOf locusOf only (not hasLocus some Thorax)
Thorax subClassOf locusOf only (not hasLocus some Abdomen)

then the spatial disjointness of Stomach and Lung will be infered by the reasoner.

Warning The relations ’locusOf ’ and ’hasLocus’ may in some cases not be strict enough.
For instance, the above axioms are debatable in case we want to model organisms that
are located inside other organisms, e.g. a fetus inside its mother or a parasite within its
host. In such cases, it might be more appropriate to use ’hasPart’ or ’partOf’ instead
of ’locusOf’ or ’hasLocus’.

69

A. Appendix: Using Protégé and its
Reasoners

A.1. The Ontology Editor Protégé
There are several editors available to develop an ontology. These guidelines focus on the
widely used editor Protégé 4.x which is freely available from http://protege.stanford.

edu/doc/owl/getting-started.html. The download page offers different plattforms, like
an installer program, ZIP file and OS X application bundle, between which the user can
choose.. Useful information about installation, tutorials and other details are available un-
der the following URLs:

• Protégé Websitehttp://protege.stanford.edu/

• Protégé Ontology Libraries
http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library

• Protégé User Documentation

• http://protege.stanford.edu/doc/users.html

• Protégé tutorial

• http://www.co-ode.org/resources/tutorials/

• Plugins
http://code.google.com/p/co-ode-owl-plugins/downloads/list?can=3

A.2. Tips and Tricks
In this section, we will present some of the technical methods that have been previously de-
veloped for using Protégé. It is important to show where the problems may lie and how to fix
these problems. These technical methods may facilitate the use of Protégé.

A.2.1. Expand the Protégé Store (Memory)
The maximum amount of memory that a Java VM can use is 1.6 GB on Windows XP and 2
GB on most Unix machines. To set the heap size parameter, you must consider the following
two points: (a) When setting the heap size parameter too low, this leads to the error message

70

http://protege.stanford.edu/doc/owl/getting-started.html
http://protege.stanford.edu/doc/owl/getting-started.html
http://protege.stanford.edu/
http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
 http://protege.stanford.edu/doc/users.html
http://www.co-ode.org/resources/tutorials/
 http://code.google.com/p/co-ode-owl-plugins/downloads/list?can=3

"out of memory" (b) To set the heap size parameter too high, however, may cause the system
to hang or lead to a weak performance 1.

To change the heap size start Protégé by double-clicking on the Protégé icon or using the
start menu. To change the heap size parameter, you must update the “Protege.lax” file. By
default, the “Protege.lax” file specifies a heap of 200MB for Protégé 4. To change the heap
size in Protégé 4.x go to Protégé 4.x directory and open the file “Protege.lax”with any text
editor. You find the following section in “Protege.lax”:

LAX.NL.JAVA.OPTION.JAVA.HEAP.SIZE.MAX

maximum heap size

Put under this section the following line and set the heap size. The line is given in Protégé
wiki page http://protegewiki.stanford.edu/wiki/Setting_Heap_Size:

lax.nl.java.option.java.heap.size.max=xxxxxx

If you have changed this line, save it and restart Protégé 4.x, because the change will be
activated after restarting.

A.2.2. Protégé Update and Download New Plugins

Figure A.1.: Plugins Preferences: Tab Plugins

Protégé 4.x can check automatically for up-
dates and downloads for available new plug-
ins. The automatic update is disabled in Pro-
tégé, you must choose the Protégé menu item
File -> Preferences.

Now the “Preferences” dialog appears.
Choose the tab “Plugins” and activate the
checkbox “Automatically check for plugin
updates at start up”. When you want to
know which other new plugins are available
to download, you can use the button “Check
for downloads now”. For update and down-
loads of new plugins, you need an internet
connection. It will take several seconds for
the dialog, to select which plugin you like to
update or download, to appear. Updates will take effect the next time you start Protégé 4.x.

A.2.3. OWLViz

1http://protegewiki.stanford.edu/wiki/Setting_Heap_Size, 11.07.2011

71

http://protegewiki.stanford.edu/wiki/Setting_Heap_Size

Figure A.2.: Preferences dialog: OWLViz Tab

OWLViz (Graphviz) is an open source graph
visualization software. After the installa-
tion of Protégé 4.x you can download the
GraphViz from http://www.graphviz.

org/. For example, you can install GraphViz
in “C:\Program”. After installing Graphviz,
some configuration steps have to be exe-
cuted.

To activate the OntoViz Tab in Protégé 4.x
follow these steps:

• Please start Protégé 4.x by double-
clicking on the Protégé icon

• Click in the menu “File” and than
“Preferences”. The following window
(Figure 1.3) will appear.

Choose in Preferences the OWLViz tab.
Then you must change the path to the lo-
cation of the “DOT” executable (dot.exe) in
“Dot Appplication Path”. For example “C:\Program\GraphViz\bin\dot.exe”, then click “OK”.
You find “dot.exe” in file “GraphViz\bin”.

Figure A.3.: Protégé menu: In “Tabs” activate
the OWLViz

After that, you must add the “GraphViz”
tab in Protégé. Choose in the menu
“Tabs” and activate the OWLViz. Now the
“GraphViz” tab appears on the menu bar.

A.2.4. Proxy
Setting in Protégé 4

Step 1: Please click on the direc-
tory where Protégé 4.x is installed e.g.
“C:/Programs”.

Step 2: Open Protégé 4.x directory.

Step 3: Click with the left mouse
button on “Protégé.lax” and open it with
“WordPad” or any other editor if you have.

72

http://www.graphviz.org/
http://www.graphviz.org/

Figure A.4.: Opening the Protégé.lax

Step 4: Please scroll down the page until
you see the section “Proxy connection”.

Figure A.5.: Protégé.lax file

73

Step 5: Enter the following lines in Pro-
tégé 4.x and save them:

Proxy connection

Add Proxy in Pro-

tege.lax in protege in-

stallation directory

�lax.nl.java.option.additional=-Dhttp.proxySet=true

-Dhttp.proxyHost=YOUR_PROXY_HOST

-Dhttp.proxyPort=YOUR_PROXY_PORT�

Note: This bit of code has to be entered in Protégé.lax as a single line (and not in multiple
lines)!

To connect a proxy, you must add your“Proxy_User” and “Proxy_Password” in “Pro-
tege.lax” file like that:

Proxy connection

Add Proxy in Protégé.lax in Protégé installation directory

�lax.nl.java.option.additional=-Dhttp.proxySet=true

-Dhttp.proxyHost=YOUR_PROXY_HOST

-Dhttp.proxyPort=YOUR_PROXY_PORT

-Dhttp.proxyUser=YOUR_PROXY_USER

-Dhttp.proxyPassword=YOUR_PROXY_PASSWORD�

Note: Again, this bit of code has to be entered in Protégé.lax as a single line (and not in
multiple lines)!

Proxy setting and authentication also descripted in “Search Mailing List Archives” by
protege-discussion under this URL: https://mailman.stanford.edu/pipermail/protege-
discussion/2007-February/000735.html

A.2.5. Import Biotop in Protégé 4.x
Step 1: Please open Protégé 4.x. Once you have opened Protégé you will come directly to this
page. Now you can see the “Ontology Imports” tab.

74

https://mailman.stanford.edu/pipermail/protege-discussion/2007-February/000735.html
https://mailman.stanford.edu/pipermail/protege-discussion/2007-February/000735.html

Figure A.6.: Ontology Imports Tab

Step 2: Now choose the “Direct imports”.

Figure A.7.: Direct imports

Step 3: Once you have opened Protégé 4.x, choose the radio button “Import an ontology
contained a document located on the web.” and click the “Continue” tab.

75

Figure A.8.: Import ontology wizard dialog: Several “Import type”

Step 4: Now click on the “Bookmarked URIs”.

Figure A.9.: Import ontology wizard dialog: The “Bookmarked URIs”

Step 5: An URI window will open. Enter this URI: http://purl.org/biotop/biotop.
owl and click “OK”.

Figure A.10.: Import ontology wizard dialog: Import from URL

76

http://purl.org/biotop/biotop.owl
http://purl.org/biotop/biotop.owl

Step 6: Now, the URI is stored in “Bookmarked URIs”.
Step 7: Click on the URI http://purl.org/biotop.biotop.owl in the “Bookmarked

URIs”.
The URI http://purl.org/biotop.biotop.owl will appear in “URI”, then click the

“Continue” tab.

Figure A.11.: Import ontology wizard dialog: Choosing the ontology from Bookmarks

Step 8: Now “biotop.owl” is imported from the URI:
http://purl.org/biotop/biotop.owl.

Figure A.12.: The selected ontology appears in “Direct Import”

A.3. Reasoner

A.3.1. What Is a Reasoner?
Ontologies are formal representations of statements about a domain in a machine-readable
form. This allows the application of automated reasoning programs to these statements. Such

77

http://purl.org/biotop.biotop.owl
 http://purl.org/biotop.biotop.owl
http://purl.org/biotop/biotop.owl

a reasoner takes all the axioms asserted in an ontology and infers new equivalences and sub-
class relations from these. That is, a reasoner makes explicit facts that previously have been
only implicitly contained in the ontology. By doing this, the reasoner computes all classes
that are explicitly or implicitly described in the ontology. This is called the classification of
the ontology. This kind of reasoning is also necessary to process search queries within an
ontology (cf. the DL Query tab in Protégé). During classification, the reasoner will also reveal
inconsistencies in the ontology that otherwise would perhaps remain unnoted. Classes whose
descriptions entail inconsistencies will be subsumed under a new class Nothing in the inferred
ontology. Hence the three main tasks for reasoners are classification, query processing and
consistency checking. It should be noted that for large and complex ontologies, classification
can take a long time. Reasoning may lead to the following results:

• new subclass relations,

• propagation of properties from superclasses to subclasses,

• revelation of equivalences (marked by an equivalent sign „≡“ in the bullet before the
class name),

• uncovering of inconsistencies („Nothing“).

A.3.2. Why Do We Use a Reasoner?
The reasoner is a useful tool both when we develop an ontology and before its application.
During development, we use the reasoner to check the consistency of newly added classes.
When this step is performed with each new class, certain modelling errors can immediately be
detected and mitigated.

Ontologies are mostly used in their inferenced version, i.e. after a reasoning programme has
made all inferences explicit. This allows, e.g., the ’inheritance’ of properties from superclasses
to subclasses. Moreover, it is a useful design strategy to assert only a mono-hierarchy, i.e. a
hierarchy in which every item has at most one parent, because such hierarchies are easier to
maintain. This does not mean that there are no cases of multiple inheritance at all, but only
that there are no such cases explicitly asserted: All multiple inheritances are inferred by the
reasoner. Also some design patterns like the exception pattern, 6.2.1, rely on the use of a
reasoner in order to infer a poly-hierarchy from an asserted mono-hierarchy.

A.3.3. HermiT Reasoner
There are several reasoning programmes, and some of them are freely available. Among the
reasoners that are pre-installed with Protégé, the reasoner HermiT can be recommanded for
most purposes. HermiT can be started from the Reasoning menu. For doing this, HermiT has
to be choosen in the menu before “Start Reasoner” is selected. The result can be view with
the help of the tab “Class hierarchy (infered)”.

HerimiT can also be downloaded manually downloaded from http://hermit-reasoner.

com/. After downloading, the file “org.semanticweb.HermiT.jar” has to be saved into the

78

 http://hermit-reasoner.com/
 http://hermit-reasoner.com/

plugin folder of Protégé. After the next start of Protégé, HermiT reasoner will appear in the
Reasoner menu. Note that HermiT 1.2.x works with Protégé 4.1 alpha and HermiT 1.3.x
works wih Protégé 4.1 beta.

79

List of Figures

3.1. (B subClassOf A) . 20
3.2. (B equivalentTo A) . 20
3.3. (A DisjointWith: B) . 21
3.4. (A DisjointUnionOf: B, C) . 21
3.5. (A and B) . 22
3.6. (A or B) . 22
3.7. (not A) . 22

4.1. The three levels of generality of a domain ontology 27
4.2. The Ontological Sextet and Its Formal Ontological Relations 32
4.3. The BFO SNAP Categories . 33
4.4. The BFO SPAN Categories . 33
4.5. DOLCE basic categories2 . 35
4.6. The top-level classes of the BioTop upper-domain ontology. 39
4.7. Disease model (Scheuermann et al., 2009; Schulz et al., 2011) 47

6.1. Asserted Model: General view of typical and atypical subclasses before reasoning . . 62
6.2. Inferred Model: General view of typical and atypical subclasses after reasoning 62
6.3. N-ary Relationships . 63
6.4. Normalisation ODP in a strict hierachy: Asserted before reasoning 65
6.5. Normalisation ODP in a Directed Acyclic Graph: Inferred after reasoning 65
6.6. Closure Ontology Design Pattern . 66
6.7. The class ’TaxonValueRegion’ . 68

A.1. Plugins Preferences: Tab Plugins . 71
A.2. Preferences dialog: OWLViz Tab . 72
A.3. Protégé menu: In “Tabs” activate the OWLViz . 72
A.4. Opening the Protégé.lax . 73
A.5. Protégé.lax file . 73
A.6. Ontology Imports Tab . 75
A.7. Direct imports . 75
A.8. Import ontology wizard dialog: Several “Import type” 76
A.9. Import ontology wizard dialog: The “Bookmarked URIs” 76
A.10.Import ontology wizard dialog: Import from URL . 76
A.11.Import ontology wizard dialog: Choosing the ontology from Bookmarks 77
A.12.The selected ontology appears in “Direct Import” . 77

80

List of Tables

2.1. Example ontologies . 11

3.1. OWL 2 Property Characteristics . 24

4.1. Aristotle’s Ten Categories . 28
4.2. The Ontological Square . 31
4.3. Comparison of DOLCE and BFO . 34

81

Bibliography

Aranguren ME (2005). Ontology Design Patterns for the Formalisation of Biological Ontolo-
gies. M. Phil. thesis, University of Manchester, Manchester. URL http://org.buffalo.

edu/RTU/papers/assisted/citations/MPhilThesis.pdf.

Aranguren ME (2009). Role and Application of Ontology Design Patterns in Bioon-
tologies. Ph. D. thesis, University of Manchester, Manchester. URL http://

mikeleganaaranguren.files.wordpress.com/2010/01/thesis.pdf.

Aranguren ME, Antezana E, Kuiper M & Stevens R (2008). Ontology Design Patterns for
bio-ontologies: a case study on the Cell Cycle Ontology. BMC Bioinformatics, 9(Suppl
5):S1. ISSN 1471-2105. doi:10.1186/1471-2105-9-S5-S1.

Armstrong DM (1980). A Theory of Universals, Universals and scientific realism, vol. 2.
Cambridge University Press, Cambridge, 1st edn. ISBN 9780521280327.

Baader F, Calvanese D, McGuinness D, Nardi D & Patel-Schneider P (2010). The Description
Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press,
Cambridge, 2nd edn. ISBN 9780521781763.

Beisswanger E, Schulz S, Stenzhorn H & Hahn U (2008). Biotop: An Upper Domain Ontol-
ogy for the Life Sciences: A Description of its Current Structure, Contents, and Interfaces
to OBO Ontologies. Applied Ontology, 3(4):205–212. doi:10.3233/AO-2008-0057.

Boeker M, Schober D, Raufie D, Grewe N, Röhl J, Jansen L & Schulz S (2012). Teaching
Good Biomedical Ontology Design. In Cornet R & Stevens R (eds.), Proceedings of the
3rd International Conference on Biomedical Ontology (ICBO 2012), KR-MED Series, July
21-25, 2012, Graz, Austria. URL http://ceur-ws.org/Vol-897/sessionJ-paper25.

pdf.

Bozsak E, Ehrig M, Handschuh S, Hotho A, Maedche A, Motik B, Oberle D, Schmitz C, Staab
S, Stojanovic L, Stojanovic N, Studer R, Stumme G, Sure Y, Tane J, Volz R & Zacharias
V (2002). KAON — Towards a large scale Semantic Web. In Bauknecht K, Tjoa A &
Quirchmayr G (eds.), E-Commerce and Web Technologies, Lecture Notes in Computer Sci-
ence, vol. 2455, pp. 231–248. Springer, Berlin. ISBN 978-3-540-44137-3.

Gangemi A, Guarino N, Masolo C, Oltramari A & Schneider L (2002). Sweetening Ontologies
with DOLCE. In Gómez-Pérez A & Benjamins R (eds.), Knowledge Engineering and
Knowledge Management, pp. 166–181. Springer, Berlin. ISBN 9783540442684. doi:10.
1007/3-540-45810-7_18.

82

http://org.buffalo.edu/RTU/papers/assisted/citations/MPhilThesis.pdf
http://org.buffalo.edu/RTU/papers/assisted/citations/MPhilThesis.pdf
http://mikeleganaaranguren.files.wordpress.com/2010/01/thesis.pdf
http://mikeleganaaranguren.files.wordpress.com/2010/01/thesis.pdf
http://ceur-ws.org/Vol-897/sessionJ-paper25.pdf
http://ceur-ws.org/Vol-897/sessionJ-paper25.pdf

Grenon P (2003). BFO in a Nutshell: A Bi-categorial Axiomatization of BFO and Comparison
with DOLCE: IFOMIS REPORTS 06/2003. URL http://www.ifomis.org/Research/

IFOMISReports/IFOMIS%20Report%2006_2003.pdf.

Grenon P & Smith B (2004). SNAP and SPAN: Towards Dynamic Spatial Ontol-
ogy. Spatial Cognition & Computation, 4(1):69–104. ISSN 1387-5868. doi:10.1207/
s15427633scc0401_5.

Grenon P, Smith B & Goldberg L (2004). Biodynamic Ontology: Applying BFO in the
Biomedical Domain. Studies in Health Technology and Informatics, 102:20–38. ISSN
0926-9630.

Gruber T (1993). A translation approach to portable ontology specifications. Knowledge
Acquisition, 5(2):199–220. ISSN 10428143. doi:10.1006/knac.1993.1008.

Guarino N & Welty C (2009). An Overview of OntoClean. In Staab S & Studer R (eds.),
Handbook on Ontologies, pp. 201–220. Springer, Berlin. ISBN 978-3-540-70999-2.

Hekkala E, Shirley MH, Amato G, Austin JD, Charter S, Thorbjarnarson J, Vliet KA, Houck
ML, Desalle R & Blum MJ (2011). An ancient icon reveals new mysteries: mummy DNA
resurrects a cryptic species within the Nile crocodile. Molecular Ecology, 20(20):4199–
4215. ISSN 1365-294X. doi:10.1111/j.1365-294X.2011.05245.x.

Hofweber T (2012). Logic and Ontology. In Zalta EN (ed.), The Stanford Encyclopedia
of Philosophy. Stanford. ISBN ISSN 1095-5054. URL http://plato.stanford.edu/

entries/logic-ontology/#4.1.

Jansen L (2006). Aristoteles’ Kategorie des Relativen zwischen Dialektik und Ontologie.
In Meixner U & Newen A (eds.), Philosophiegeschichte und logische Analyse /Logical
Analysis and History of Philosophy / History of ontology and a focus on Plato /Geschichte
der Ontologie und ein Schwerpunkt zu Platon: 9, pp. 79–104. Mentis. ISBN 389785158X.

Jansen L (2008a). Categories: The Top-Level Ontology. In Munn K & Smith B (eds.), Applied
Ontology: An Introduction, pp. 173–196. Ontos Verlag, Heusenstamm bei Frankfurt. ISBN
9783938793985.

Jansen L (2008b). Classification. In Munn K & Smith B (eds.), Applied ontology: an intro-
duction, vol. 9, pp. 159–172. Ontos Verlag.

Jansen L (2010). What is a Formal Ontology? Some Meta-Ontological Remarks. In Mainzer
K (ed.), ECAP10. VIII European Conference on Computing and Philosophy, pp. 256–260.
Hut, München.

Jansen L & Schulz S (2011). Grains, Components and Mixtures in Biomedical Ontologies.
Journal of Biomedical Semantics, 2(Suppl 4):S2.

Johnson W (1921). Logic, vol. 1. Cambridge University Press, Cambridge.

83

http://www.ifomis.org/Research/IFOMISReports/IFOMIS%20Report%2006_2003.pdf
http://www.ifomis.org/Research/IFOMISReports/IFOMIS%20Report%2006_2003.pdf
http://plato.stanford.edu/entries/logic-ontology/#4.1
http://plato.stanford.edu/entries/logic-ontology/#4.1

Klyne G & Carroll JJ (2004). Resource Description Framework (RDF): Concepts and Abstract
Syntax. URL http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A & Schneider L (2003). WonderWeb
Deliverable D17: The WonderWeb Library of Foundational Ontologies: Preliminary Re-
port. ISTC-CNR, Padova. URL http://wonderweb.semanticweb.org/deliverables/

documents/D17.pdf.

Merrill GH (2010). Ontological Realism: Methodology or Misdirection? Applied Ontology,
5(2):79–108. doi:10.3233/AO-2010-0076.

Motik B, Patel-Schneider PF & Cuenca Grau B (2009). OWL 2 Web Ontology Language Di-
rect Semantics. URL http://www.w3.org/TR/2009/REC-owl2-direct-semantics-

20091027/.

Munn K & Smith B (eds.) (2008). Applied Ontology: An Introduction. Ontos Verlag, Heusen-
stamm bei Frankfurt. ISBN 9783938793985.

Quine WV (1948). On What There Is. The Review of Metaphysics, 2(5):21–38.

Rector A (2008). Barriers, approaches and research priorities for integrating biomedi-
cal ontologies: SemanticHEALTH Deliverable D 6.1: Semantic Interoperability Deploy-
ment and Research Roadmap. URL http://www.semantichealth.org/DELIVERABLES/

SemanticHEALTH_D6_1.pdf.

Röhl J & Jansen L (2011). Representing dispositions. In Herre H, Hoehndorf R, Kelso J
& Schulz S (eds.), Proceedings of Ontologies in Biomedicine and Life Sciences (OBML
2010), Mannheim, Germany, vol. 2, p. S4. Journal of Biomedical Semantics, Mannheim
and Germany. doi:10.1186/2041-1480-2-S4-S4. URL http://www.jbiomedsem.com/

content/2/S4/S4/comments.

Scheuermann RH, Ceusters W & Smith B (2009). Toward an Ontological Treatment of Dis-
ease and Diagnosis. Proceedings of the 2009 AMIA Summit on Translational Bioinformat-
ics, 2009:116–120. ISSN 2153-6430.

Schulz S & Hahn U (2007). Towards the ontological foundations of symbolic biological
theories. Artificial Intelligence in Medicine, 39(3):237–250. doi:10.1016/j.artmed.2006.12.
001.

Schulz S, Spackman K, James A, Cocos C & Boeker M (2011). Scalable representations of
diseases in biomedical ontologies. Journal of Biomedical Semantics, 2(Suppl 2):S6. ISSN
2041-1480. doi:10.1186/2041-1480-2-S2-S6.

Schulz S, Stenzhorn H & Boeker M (2008). The ontology of biological taxa. Bioinformatics,
24(13):i313–321. ISSN 1367-4811.

84

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://wonderweb.semanticweb.org/deliverables/documents/D17.pdf
http://wonderweb.semanticweb.org/deliverables/documents/D17.pdf
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/
http://www.semantichealth.org/DELIVERABLES/SemanticHEALTH_D6_1.pdf
http://www.semantichealth.org/DELIVERABLES/SemanticHEALTH_D6_1.pdf
http://www.jbiomedsem.com/content/2/S4/S4/comments
http://www.jbiomedsem.com/content/2/S4/S4/comments

Schulz S, Stenzhorn H, Boeker M & Smith B (2009). Strengths and limitations of for-
mal ontologies in the biomedical domain. RECIIS - Electronic Journal in Commu-
nication, Information and Innovation in Health, 3(1):31–45. ISSN 1981-6286. doi:
10.3395/reciis.v3i1.241en.

Schwarz U & Smith B (2008). Ontologische Relationen. In Jansen L & Smith B (eds.),
Biomedizinische Ontologie, pp. 155–172. VDF Hochschulverlag AG, Zürich. ISBN
3728131830.

Smith B (2004). Beyond Concepts: Ontology as Reality Representation. In Varzi A & Vieu
L (eds.), Proceedings of FOIS 2004. International Conference on Formal Ontology and
Information Systems, pp. 73–84.

Smith B (2005). Against Fantology. In Marek JC & Reicher ME (eds.), Experience and
Analysis, pp. 135–170. ÖBV & HPT, Vienna.

Smith B & Ceusters W (2007). Ontology as the Core Discipline of Biomedical Informatics:
Legacies of the Past and Recommendations for the Future Direction of Research. In Dodig-
Crnkovic G & Stuart S (eds.), Computing, Philosophy, And Cognitive Science - The Nexus
and the Liminal, pp. 104–122. Cambridge Scholars Press, Cambridge.

Smith B, Ceusters W, Klagges B, Köhler J, Kumar A, Lomax J, Mungall C, Neuhaus F, Rector
AL & Rosse C (2005). Relations in biomedical ontologies. Genome Biology, 6(5):R46.
ISSN 1465-6914. doi:10.1186/gb-2005-6-5-r46. URL http://genomebiology.com/

2005/6/5/R46.

Smith B, Kusnierczyk W, Schober D & Ceusters W (2006). Towards a Reference Terminology
for Ontology Research and Development in the Biomedical Domain. In Bodenreider O
(ed.), KR-MED 2006 Proceedings. Second International Workshop on Formal Biomedical
Knowledge Representation, pp. 57–65. Baltimore.

Spear AD (2006). Ontology for the Twenty First Century: An Introduction with Recommen-
dations. URL http://www.ifomis.org/bfo/documents/manual.pdf.

Stenzhorn H, Beisswanger E & Schulz S (2007). Towards a Top-Domain Ontology for Link-
ing Biomedical Ontologies. Studies in Health Technology and Informatics, 129(Pt 2):1225–
1229. ISSN 0926-9630.

Studer R, Benjamins V & Fensel D (1998). Knowledge Engineering: Principles and methods.
Data & Knowledge Engineering, 25(1–2):161–197. ISSN 0169-023X. doi:10.1016/S0169-
023X(97)00056-6.

Suárez-Figueroa MC & Gómez-Pérez A (2008). First Attempt towards a Standard Glossary
of Ontology Engineering Terminology. In Nistrup Madsen B (ed.), Managing Ontologies
and Lexical Resources: TKE 2008 : 8th International Conference on Terminology and
Knowledge Engineering. Litera, Græsted. ISBN 87-91242-50-9.

85

http://genomebiology.com/2005/6/5/R46
http://genomebiology.com/2005/6/5/R46
http://www.ifomis.org/bfo/documents/manual.pdf

	Introduction
	Main Objectives and Intended Usage of this Guideline
	Structure of the Document
	Typographical Conventions
	Document Status and Feedback

	Fundamentals
	What Does ``Ontology'' Mean?
	What Is an Ontology in Information Science?
	What Is an Ontology?
	Why Do We Build and Use Ontologies?
	What an Ontology Is not
	Ontology vs. Knowledge Base
	Ontology vs. Inventory

	The Elements of Ontologies
	Classes of Individuals
	Relations
	General Remarks
	Taxonomies

	Metadata

	A Formal Characterization of an Ontology

	Description Logics (DL)
	What Are Description Logics?
	Description Logics Basics
	Description Logics: Syntax and Semantics
	Working with Classes
	Working with Data and Object Properties

	DL Ontology Pitfalls

	Upper-Level Ontology
	What Are the Most General Kinds of Being?
	Starting with Aristotle
	Dependent and Independent Entities
	Continuants and Occurrents
	Classes and Their Members

	Two Important Top-Level Ontologies
	BFO: Basic Formal Ontology
	DOLCE: Descriptive Ontology for Linguistic and Cognitive Engineering

	BioTop: An Upper-Domain Ontology for the Life Sciences
	The Structure of BioTop
	Material Object
	Collective Material Entities and Compounds of Them
	Immaterial Object
	Structured Biological Entities
	Process and Participation
	Qualities and Their Values
	Taxonomic Differentiation of Organisms
	Differentiation between Canonical and Pathological

	Information Object
	Roles and Dispositions

	Good Practice Ontology Design Principles
	Class Selection Principles
	Linguistic Pitfalls for Class Selection
	Further Class Selection Rules

	Specifying Class Metadata
	What Is Metadata?
	Why Does One Need Metadata?
	Don't Get Stuck in the 'Meta-Ether'

	Naming Conventions
	Designing Taxonomies
	General Design Recommendations
	Subsumption Misuse Problems
	OntoClean Taxonomy Design Principles

	Relations for Rich Class Definitions
	Example: Parthood Relations
	Difficulties with Inverse Relations

	Ontology Design Patterns (ODPs)
	What Are Ontology Design Patterns (ODPs)?
	Extension ODPs
	Exceptions
	N-ary Relations

	Good Practice ODPs
	Normalisation
	Closure
	Value Partitions

	Content ODPs
	Spatial disjointness

	Appendix: Using Protégé and its Reasoners
	The Ontology Editor Protégé
	Tips and Tricks
	Expand the Protégé Store (Memory)
	Protégé Update and Download New Plugins
	OWLViz
	Proxy Setting in Protégé 4
	Import Biotop in Protégé 4.x

	Reasoner
	What Is a Reasoner?
	Why Do We Use a Reasoner?
	HermiT Reasoner

	Bibliography

